
A Kinetic Framework for Fluids with Ordering

Umberto Zerbinati*, joint work with: J. A. Carillo* ,P. E. Farrell*,
A. Medaglia*.

*Mathematical Institute – University of Oxford

Bath Royal Literary and Scientific Institution, Internal Seminar,
6th June 2025



ORDERED FLUIDS

Partially ordered fluids are ubiquitous
in nature and have a wide range of
applications.

� Liquid crystals, here depicted in
nematic and smectic phases.

� Ferrofluids, i.e. a colloidal
suspension made of nanoscale
ferromagnetic or ferrimagnetic
particles.

� Gas saturated magma melts
and other fluids with
non-diffusive bubbles.
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A KINETIC THEORY APPROACH

� A kinetic theory approach seeks to describe the
evolution of the fluid using a statistical description
and knowledge of the microscopic interactions.

� Typically, this is done by considering only binary
interactions between fluid constituents. This is a
good approximation for dilute systems.

� In certain cases, the partial ordering of the fluid is a
consequence of the dilute nature of the system.

Onsager’s Approach To Liquid Crystals

Onsager explained the emergence of nematic or-
dering by a truncation of the Mayer cluster expan-
sion, valid for dilute systems.

] J. Am. Chem. Soc. 2011 133 (8),
2346-2349 (A. Kuijk, A. van
Blaaderen, A. Imhof).
ArXiv First order
non-instantaneous corrections in
collisional kinetic alignment
models, 2025 (L.Kanzler, C.
Moschella, C. Schmeiser)
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ORDER PARAMETER MANIFOLD
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Order Parameter Manifold

ORDER PARAMETER MANIFOLD

Order Parameter Manifold

We say that the tuple (M,A) is an order param-
eter manifold if M is a smooth manifold with a
fixed parametrization, and A is a Lie group action
of SO(d) on M, i.e. the map A is smooth enough
to be differentiable.

Furthermore, we say that a field ν : Ed → M is an
order parameter field if ∀c ∈ Rd and ∀Q ∈ SO(d)
we have

ν(Qx+ c) = A(Q, ν(x)), ∀x ∈ Ed .

] Continua with microstructure,
(G. Capriz),

Differential geometry and continuum
mechanics, (G. Capriz,
R.J. Knops).

� We need to understand what
manifold M captures the nature
of the order parameters.

� We need to understand the
action of rotations on the
manifold M.

U. Zerbinati Kinetic Theory of Ordered Fluids Bath, 6th Jun. ’25 3 / 28



Order Parameter Manifold

ORDER PARAMETER MANIFOLD

Order Parameter Manifold

We say that the tuple (M,A) is an order param-
eter manifold if M is a smooth manifold with a
fixed parametrization, and A is a Lie group action
of SO(d) on M, i.e. the map A is smooth enough
to be differentiable.

Furthermore, we say that a field ν : Ed → M is an
order parameter field if ∀c ∈ Rd and ∀Q ∈ SO(d)
we have

ν(Qx+ c) = A(Q, ν(x)), ∀x ∈ Ed .

] Continua with microstructure,
(G. Capriz),

Differential geometry and continuum
mechanics, (G. Capriz,
R.J. Knops).

� We need to understand what
manifold M captures the nature
of the order parameters.

� We need to understand the
action of rotations on the
manifold M.

U. Zerbinati Kinetic Theory of Ordered Fluids Bath, 6th Jun. ’25 3 / 28



Order Parameter Manifold

ORDER PARAMETER MANIFOLD

Order Parameter Manifold

We say that the tuple (M,A) is an order param-
eter manifold if M is a smooth manifold with a
fixed parametrization, and A is a Lie group action
of SO(d) on M, i.e. the map A is smooth enough
to be differentiable.

Furthermore, we say that a field ν : Ed → M is an
order parameter field if ∀c ∈ Rd and ∀Q ∈ SO(d)
we have

ν(Qx+ c) = A(Q, ν(x)), ∀x ∈ Ed .

] Continua with microstructure,
(G. Capriz),

Differential geometry and continuum
mechanics, (G. Capriz,
R.J. Knops).

� We need to understand what
manifold M captures the nature
of the order parameters.

� We need to understand the
action of rotations on the
manifold M.

U. Zerbinati Kinetic Theory of Ordered Fluids Bath, 6th Jun. ’25 3 / 28



Order Parameter Manifold

ORDER PARAMETER MANIFOLD

Order Parameter Manifold

We say that the tuple (M,A) is an order param-
eter manifold if M is a smooth manifold with a
fixed parametrization, and A is a Lie group action
of SO(d) on M, i.e. the map A is smooth enough
to be differentiable.

Furthermore, we say that a field ν : Ed → M is an
order parameter field if ∀c ∈ Rd and ∀Q ∈ SO(d)
we have

ν(Qx+ c) = A(Q, ν(x)), ∀x ∈ Ed .

] Continua with microstructure,
(G. Capriz),

Differential geometry and continuum
mechanics, (G. Capriz,
R.J. Knops).

� We need to understand what
manifold M captures the nature
of the order parameters.

� We need to understand the
action of rotations on the
manifold M.

U. Zerbinati Kinetic Theory of Ordered Fluids Bath, 6th Jun. ’25 3 / 28



Order Parameter Manifold

AN EXAMPLE: NEMATIC LIQUID CRYSTALS
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] Variational Theories for Liquid
Crystals, (E. Virga),

The Physics of Liquid Crystals,
(P.G. de Gennes, J. Prost).

� We can represent the state of a
calamitic molecule using the set
of Euler angles θ, ϕ, ψ.

� We can also represent the state
of a calamitic molecule using a
director field ν ∈ S2.

� For head-tail symmetric calamitic
molecules, we can use RP2.
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Order Parameter Manifold

EMBEDDING RESULTS

Embedding theorems

� Any compact orientable 2-manifold can be
embedded in R3.

� The real projective space RP2 can not be
embedded in R3.

� The real projective space RP2 can be embed-
ded in R4.

] Curves and Surfaces, (M. Abate,
F. Tovena),

Topology, (M. Manetti).

� We can embed the director field
ν in R3 and work with a vector
space structure.

�� We can embed the real projective
space RP2 in R4 and work with a
vector space structure.
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THE MICROSCOPIC WORLD

2



The Microscopic World

LAGRANGIAN MECHANICS OF THE CONSTITUENTS

We will here assume that the fluid is composed of a set
of constituents, each of which is described by a position
xi , a velocity v i , the order parameter νi and its total
time derivative ν̇ i .

Li :=
1

2
m1(ẋ i · ẋ i ) +

1

2
ν̇ i · Ωi

(νi )ν̇ i .

We assume the interaction between the constituents is
given by a potential W(|xi − xj |, νi , νj), i.e.

Li,j = Li (xi ,Ξi ) + Lj(xj ,Ξj) +W(|xi − xj |, νi , νj),

where Ξi := (v i , νi , ν̇ i ).

ℓ

a

ν
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The Microscopic World

NOETHER’S THEOREM: SYMMETRIES AND CONSERVATION LAWS

Noether’s theorem

If a Lagrangian L is invariant under a group action
with infinitesimal generators G then

d

dt

(
∂L
∂q̇1,2

· G
)

= 0, q1,2 = (x1, x2, ν1, ν2) .

In other words for any physical symmetry of the
system, there is a conserved quantity.

] Analytical Mechanics: An
Introduction, (A. Fasano,
S. Marmi).

� The Lagrangian L is invariant
under translations, i.e. the linear
momentum is conserved.

� The Lagrangian L is independent
of time and the kinetic energy is
a homogeneous quadratic form
of the conjugate moments,
i.e. the energy is conserved.
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The Microscopic World

NOETHER’S THEOREM: SYMMETRIES AND CONSERVATION LAWS

Infinitesimal Generator of A

For fixed ν ∈ M, the orbit map

Aν : SO(3) → SO(3)ν, Q 7→ A(Q, ν),

is differentiable at the identity.

We will denote by Aν : SO(3) → TνM the differ-
ential of Aν at the identity.
Composing the canonical isomorphism R3 →
SO(3) with the differential of the orbit map we
obtain a map Aν : R3 → TνM.

] Continua with microstructure,
(G. Carpiz),

Differential geometry and continuum
mechanics, (G. Carpiz,
R.J. Knops).

Assuming that the Lagrangian L is
frame-indifferent, i.e. invariant under
the action of SO(3), we have:

G = (r × x, r × x ,Aνr,Aνr) ,

where r is the rotation axis. Thus,
the angular momentum is conserved.

U. Zerbinati Kinetic Theory of Ordered Fluids Bath, 6th Jun. ’25 8 / 28



The Microscopic World

NOETHER’S THEOREM: SYMMETRIES AND CONSERVATION LAWS

Infinitesimal Generator of A

For fixed ν ∈ M, the orbit map

Aν : SO(3) → SO(3)ν, Q 7→ A(Q, ν),

is differentiable at the identity.

We will denote by Aν : SO(3) → TνM the differ-
ential of Aν at the identity.
Composing the canonical isomorphism R3 →
SO(3) with the differential of the orbit map we
obtain a map Aν : R3 → TνM.

] Continua with microstructure,
(G. Carpiz),

Differential geometry and continuum
mechanics, (G. Carpiz,
R.J. Knops).

Assuming that the Lagrangian L is
frame-indifferent, i.e. invariant under
the action of SO(3), we have:

G = (r × x, r × x ,Aνr,Aνr) ,

where r is the rotation axis. Thus,
the angular momentum is conserved.

U. Zerbinati Kinetic Theory of Ordered Fluids Bath, 6th Jun. ’25 8 / 28



The Microscopic World

AN EXAMPLE: ANGULAR MOMENTUM NEMATIC LIQUID CRYSTALS

For segment like molecules the classical we have Ω(ν) = I , where I is the Identity. Thus,
Noether’s theorem implies the conservation of the following quantity:

m1x1 × p
1
+ ν × ν̇1 +m2x1 × p

2
+ ν × ν̇2.

Let ω be the angular velocity of the segment, using the triple cross product together with the
well-known property of segment like rigid bodies that ν̇ i = ω × ν i we can rewrite one term of
the previous expression as

ν i × ν̇ i = ν i × ωi × ν i = (ν i · ν i )ω − (ν i · ωi )ν i = ωi − (ν i · ωi )ν i = Iiω,

where used the fact that the inertia tensor of a segment is Ii := I − ν i ⊗ ν i . Therefore, we
retrieved the classical definition of angular momentum, i.e.

x1 × p
1
+ I1ω1 + x2 × p

2
+ I2ω2,
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BBGKY Hierarchy

HAMILTONIAN MECHANICS OF THE CONSTITUENTS

We introduce the Hamiltonian formalism associated to the Lagrangian L introduced in the
previous section. As usual, we introduce the conjugate momenta to the generalised
coordinates, i.e.

pi :=
∂L
∂ẋi

= mẋi , ςi :=
∂L
∂ν̇i

= Ω(ν) ν̇i .

We then introduce the Hamiltonian H of the full system of N constituents, only interacting in
pairs, as

H :=
N∑
i=1

1

2m
pi · pi +

1

2
ςi · Ω(ν)−1 ςi +

∑
1≤i<j≤N

W(|xi − xj |, νi , νj).

The Legendre transform of the Lagrangian L is always well-defined, assuming Ω(ν) is
symmetric and positive definite for all ν ∈ M.
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BBGKY Hierarchy

STATISTICAL MECHANICS APPROACH

We will also denote Γi := (xi , pi , νi , ς i )
the phase space point of the i-th con-
stituent, and introduce

π
(
{Γi}Ni=1

)
:=

N∑
i=1

δ (Γi − Γ∗i (t))

the Klimontovich distribution func-
tion, where Γ∗i (t) is the configuration of
the i-th constituent at time t.

We will denote πs the marginals of the
Klimontovich distribution function, with
respect to Γ(s) = (Γs+1, . . . , ΓN), i.e.

πs ({Γi}si=1) :=

∫
π
(
{Γi}Ni=1

)
dΓ(s).

The distribution function πs is called
the s-particle distribution function,
and represents the probability of find-
ing s particles in the phase space point
Γ1, . . . , Γs .
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BBGKY Hierarchy

BOGOLIUBOV–BORN–GREEN–KIRKWOOD–YVON HIERARCHY

]
An Introduction to the Theory of the Boltzmann Equation, (S. Harris),
Statistical Physics of Particles, (M. Kardar),
Statistical Mechanics, 2nd Edition (K. Huang).

Let fs denote the normalised πs . We obtain the following expression for the BBGKY hierarchy,

∂fs
∂t

+ {πs ,Hs} =

∫ s∑
i=1

∂fs+1

∂p
i

· ∂W(|xi − xs+1|, νi , νs+1)

∂xi
dΓs+1

+

∫ s∑
i=1

∂fs+1

∂ς i
· ∂W(|xi − xs+1|, νi , νs+1)

∂νi
dΓs+1,

where Hs =
(∑s

i=1

|pi |2

2m + 1
2 ςi · Ω(ν)

−1ςi

)
+
∑

1≤i<j≤sW(|xi − xj |, νi , νj).
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BBGKY Hierarchy

BOGOLIUBOV–BORN–GREEN–KIRKWOOD–YVON HIERARCHY

The first two terms of the BBGKY hierarchy, under the assumption that there are no
three-body interactions, amount to

∂f1
∂t

+
p
1

m
· ∂f1
∂x1

+Ω(ν1)
−1ς1

∂f1
∂ν1

=

+

∫
∂W(|x1 − x2|, ν1, ν2)

∂x1

( ∂f2
∂p

1

− ∂f2
∂p

2

)
+

∫
∂W(|x1 − x2|, ν1, ν2)

∂ν1

( ∂f2
∂ς1

− ∂f2
∂ς2

)

∂f2
∂t

+
p
1

m
· ∂f2
∂x1

+Ω(ν1)
−1ς1 ·

∂f2
∂ν1

+
p
2

m
· ∂f2
∂x2

+Ω(ν2)
−1ς2 ·

∂f2
∂ν2

− ∂W(|x1 − x2|, ν1, ν2)
∂x1

( ∂f2
∂p

1

− ∂f2
∂p

2

)
− ∂W(|x1 − x2|, ν1, ν2)

∂ν1

( ∂f2
∂ς1

− ∂f2
∂ς2

)
= 0
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BBGKY Hierarchy

BOGOLIUBOV–BORN–GREEN–KIRKWOOD–YVON HIERARCHY

To highlight the same timescale separation in the second term of the hierarchy we introduce
fast and slow varying coordinates, i.e.

x = x2 − x1, X =
1

2
(x2 + x1) .

We then boxed the terms that are quickly varying in the second equation of the BBGKY
hierarchy, i.e.

∂f2
∂t

+
1

2

p
2
+p

1

m
· ∂f2
∂X

+Ω(ν1)
−1ς1 ·

∂f2
∂ν1

+Ω(ν2)
−1ς2 ·

∂f2
∂ν2

+
p
2
−p

1

m
· ∂f2
∂x

− ∂W(|x1 − x2|, ν1, ν2)
∂x1

·
( ∂f2
∂p

1

− ∂f2
∂p

2

)
− ∂W(|x1 − x2|, ν1, ν2)

∂ν1
· ∂f2
∂ς1

= 0
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BBGKY Hierarchy

EMBEDDED BOGOLIUBOV–BORN–GREEN–KIRKWOOD–YVON HIERARCHY

Using the embedding results previously discussed, we can use the fast and slow varying
coordinates also for the order parameters, i.e.

n = ν2 − ν1, N =
1

2
(ν2 + ν1) .

We then introduce A = 1
2

(
Ω

2
(νa1)

−1ς1 +Ω
2
(ν2)

−1ς2
)
, B =

(
Ω

2
(ν2)

−1ς2 − Ω1(ν1)
−1ς1

)
, i.e.

∂f2
∂t

+
1

2

p
2
+p

1

m
· ∂f2
∂X

+ A · ∂f2
∂N

+ B · ∂f2
∂n

+
p
2
−p

1

m
· ∂f2
∂x

− ∂W(|x1 − x2|, ν1, ν2)
∂x1

·
( ∂f2
∂p

1

− ∂f2
∂p

2

)
− ∂W(|x1 − x2|, ν1, ν2)

∂ν1
·
( ∂f2
∂ς1

− ∂f2
∂ς2

)
= 0.
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A VLASOV–TYPE EQUATION
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A Vlasov–type equation

VLASOV–TYPE EQUATION

From the separation of timescales in the BBGKY hierarchy we obtain the following identity,

p
2
− p

1

m
· ∂f2
∂x

=
∂W
∂x1

(|x1 − x2|, ν1, ν2) ·

(
∂f2
∂p

1

− ∂f2
∂p

2

)
.

Substituting this identity in the second equation of the BBGKY hierarchy we obtain the
following equation,

∂f1
∂t

+
p
1

m
· ∂f1
∂x1

+Ω(ν1)
−1ς1 ·

∂f1
∂ν1

=

∫
p
2
− p

1

m
· ∂f2
∂x

dΓ2

+

∫
∂W(|x1 − x2|, ν1, ν2)

∂ν1
· ∂f2
∂ς1

dΓ2.
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A Vlasov–type equation

WEAK-ORDER INTERACTIONS

We might be tempted to assume inter-
actions are weak,

f2(Γ1, Γ2, t) = f1(Γ1, t)f1(Γ2, t).

This leads to equations of a reversible
nature, compatible with Loschmidt’s
paradox.
Thus, we have no guarantee that
the system described thermalises to a
Maxwellian distribution.

Weak-order Interactions

We will say that a kinetic equation is gov-
erned by weak-order interactions if the
derivative of the two-particle distribution
function factorises as,

∂νi f2(Γ1, Γ2, t) = f1(Γi , t)∂νi f1(Γj , t),

∂ςi f2(Γ1, Γ2, t) = f1(Γj , t)∂ςi f1(Γi , t),

for i ̸= j and i , j = 1, 2.
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A Vlasov–type equation

VLASOV–TYPE EQUATION

Under the assumption of weak-order interactions we can rewrite the first equation of the
BBGKY hierarchy as,

∂f

∂t
+ ẋ · ∇xf + ν̇ · ∇ν f + V · ∇ς f = C [f , f ],

where the collision operator C [f , f ] can be written using the transition “probability” W as,

C [f1, f1]=

∫
dΞ′

1 dΞ
′
2dΞ2

∫ π
2

0

∫ 2π

0

W (Ξ′
1,Ξ

′
2 7→ Ξ1,Ξ2) f1(Γ

′
1, t)f1(Γ

′
2, t)

−W (Ξ1,Ξ2 7→ Ξ′
1,Ξ

′
2) f1(Γ1, t)f1(Γ2, t) dθ2 dφ2.
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A Vlasov–type equation

BOLTZMANN INEQUALITY AND THERMALISATION

] J. Stat. Phys. Volume 26, 795–801 (C. Cercignani, M. Lampis).

As we said before the collision operator C [f , f ] considered here guarantees that the system
thermalises to a Maxwellian distribution. In particular, we can prove∫

dΞ log(f (Γ, t))C [f , f ] ≤ 0,

which is a generalisation of the Boltzmann inequality for Boltzmann’s equation with internal
degrees of freedom. Following the classical calculus of variation approach we can prove that
the unique Maxwellian with prescribed collision invariants is

f̄ (Γ, t) = exp
(
a+ b · p + c(p × x+ wν × ς) + d(m−1p · p + ς · Ω(ν)−1ς)

)
.
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A Vlasov–type equation

SPACE HOMOGENEOUS VLASOV-TYPE EQUATION

We are interested in the time evolution of the distribution f (v , ν, ν̇, t), v ∈ R2, ν ∈ M,
ς ∈ TνM, and t ≥ 0, solution to the space-homogeneous equation

∂f

∂t
+Ω(ν)−1ς · ∇ν f + V · ∇ς f =

1

τ
C[f , f ],

where τ has been obtained rescaling the collision frequency, and as collision operator we
consider the one associated with Maxwellian molecules, i.e.

C [f , f ] =

∫
dς2 dv2 dν2f

′f ′∗ −
∫

dς2 dv2 dν2ff∗, (1)

complemented with initial conditions f (v , ν, ς, 0) = f0(v , ν, ς) and where we will denote
f∗ = f (v2, ν2, ς2, t), and f ′, f ′∗ are the distributions depending on the post interaction
coordinates.
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A Vlasov–type equation

DIRECT SIMULATIONS MONTE CARLO (DSMC)

We consider discretization of the time interval [0,Tf ], with Tf > 0 final simulation time, of
step ∆t > 0 such that tn = n∆t. By f n(v , ν, ς) we denote an approximation of f (v , ν, ς, tn) at
the n-th time step and we apply a splitting method between the Vlasov-type transport operator
and the collisional operator.

Transport T∆t(·)

We solve the Vlasov-type step f̂ =
T∆t(f

n)
∂ f̂

∂t
+Ω(ν)−1ς · ∇ν f̂ + V · ∇ς f̂ = 0

f̂ (v , ν, ς, 0) = f n(v , ν, ς)

Collision Q∆t(·)

We then solve the collision step ˆ̂f =
Q∆t(f̂ ) with initial data given by the so-
lution of the previous stepτ

∂ˆ̂f

∂t
= C[ˆ̂f , ˆ̂f ]

ˆ̂f (v , ν, ς, 0) = f̂ (v , ν, ς,∆t).

The first order in time splitting finally reads f n+1(v , ν, ς) = Q∆t(T∆t(f
n)(v , ν, ς)).

U. Zerbinati Kinetic Theory of Ordered Fluids Bath, 6th Jun. ’25 21 / 28



A Vlasov–type equation

DIRECT SIMULATIONS MONTE CARLO (DSMC)

We consider discretization of the time interval [0,Tf ], with Tf > 0 final simulation time, of
step ∆t > 0 such that tn = n∆t. By f n(v , ν, ς) we denote an approximation of f (v , ν, ς, tn) at
the n-th time step and we apply a splitting method between the Vlasov-type transport operator
and the collisional operator.

Transport T∆t(·)

We solve the Vlasov-type step f̂ =
T∆t(f

n)
∂ f̂

∂t
+Ω(ν)−1ς · ∇ν f̂ + V · ∇ς f̂ = 0

f̂ (v , ν, ς, 0) = f n(v , ν, ς)

Collision Q∆t(·)

We then solve the collision step ˆ̂f =
Q∆t(f̂ ) with initial data given by the so-
lution of the previous stepτ

∂ˆ̂f

∂t
= C[ˆ̂f , ˆ̂f ]

ˆ̂f (v , ν, ς, 0) = f̂ (v , ν, ς,∆t).

The first order in time splitting finally reads f n+1(v , ν, ς) = Q∆t(T∆t(f
n)(v , ν, ς)).

U. Zerbinati Kinetic Theory of Ordered Fluids Bath, 6th Jun. ’25 21 / 28



A Vlasov–type equation

DIRECT SIMULATIONS MONTE CARLO (DSMC)

We consider discretization of the time interval [0,Tf ], with Tf > 0 final simulation time, of
step ∆t > 0 such that tn = n∆t. By f n(v , ν, ς) we denote an approximation of f (v , ν, ς, tn) at
the n-th time step and we apply a splitting method between the Vlasov-type transport operator
and the collisional operator.

Transport T∆t(·)

We solve the Vlasov-type step f̂ =
T∆t(f

n)
∂ f̂

∂t
+Ω(ν)−1ς · ∇ν f̂ + V · ∇ς f̂ = 0

f̂ (v , ν, ς, 0) = f n(v , ν, ς)

Collision Q∆t(·)

We then solve the collision step ˆ̂f =
Q∆t(f̂ ) with initial data given by the so-
lution of the previous stepτ

∂ˆ̂f

∂t
= C[ˆ̂f , ˆ̂f ]

ˆ̂f (v , ν, ς, 0) = f̂ (v , ν, ς,∆t).

The first order in time splitting finally reads f n+1(v , ν, ς) = Q∆t(T∆t(f
n)(v , ν, ς)).

U. Zerbinati Kinetic Theory of Ordered Fluids Bath, 6th Jun. ’25 21 / 28



A Vlasov–type equation

DIRECT SIMULATIONS MONTE CARLO (DSMC)

We consider discretization of the time interval [0,Tf ], with Tf > 0 final simulation time, of
step ∆t > 0 such that tn = n∆t. By f n(v , ν, ς) we denote an approximation of f (v , ν, ς, tn) at
the n-th time step and we apply a splitting method between the Vlasov-type transport operator
and the collisional operator.

Transport T∆t(·)

We solve the Vlasov-type step f̂ =
T∆t(f

n)
∂ f̂

∂t
+Ω(ν)−1ς · ∇ν f̂ + V · ∇ς f̂ = 0

f̂ (v , ν, ς, 0) = f n(v , ν, ς)

Collision Q∆t(·)

We then solve the collision step ˆ̂f =
Q∆t(f̂ ) with initial data given by the so-
lution of the previous stepτ

∂ˆ̂f

∂t
= C[ˆ̂f , ˆ̂f ]

ˆ̂f (v , ν, ς, 0) = f̂ (v , ν, ς,∆t).

The first order in time splitting finally reads f n+1(v , ν, ς) = Q∆t(T∆t(f
n)(v , ν, ς)).

U. Zerbinati Kinetic Theory of Ordered Fluids Bath, 6th Jun. ’25 21 / 28



A Vlasov–type equation

DSMC: TRANSPORT T∆t(·)

We introduce an approximation of the distribution function with a sample of N particles
identified by their velocities vn

i , order parameter νni , and conjugate momentum ςni at the time
tn, for i = 1, 2, . . . ,N,

f n(v , ν, ς) ≈ f n,N(ν, ς) =
N∑
i=1

δ(ν − νi (t
n))⊗ δ(ς − ς i (t

n)).

The Vlasov-type transport step T∆t(·) is solved by considering the characteristic equations
associated to the operator, which as discussed in the previous section, result in a system of
(time-continuos) ODEs

dν i
dt

= ς i ,
dς i
dt

= V(νi , ς i ).

This system is solved, at the time discrete level, with a classical first order Euler scheme for the
time derivative.
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A Vlasov–type equation

DSMC: COLLISION Q∆t(·)

The collisional step Q∆t(·) is solved with a classical Nanbu-Babovsky DSMC approach. First,
we rewrite the collisional operator to highlight the gain and loss part integrating the second
term in (1)

G − L =

∫
dς2 dv2 dν2f

′f ′∗ − f ,

and then we discretize the time derivative with a first order in time Euler scheme to obtain

f n+1 =

(
1− ∆t

τ

)
f n +

∆t

τ

∫
dς2 dv2 dν2f

′f ′∗ .

We have thus rewritten f n+1 as a convex combination of f n and the gain term, i.e. we will
consider all the particles in the system with probability ∆t

τ we will update the velocity, order
parameter and conjugate momentum according to the binary law relating the pre and post
interaction velocities, order parameters and conjugate momenta.
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A Vlasov–type equation

AN EXAMPLE: NEMATIC LIQUID CRYSTALS

In the context of of rod-like molecules, with vanishing girth, we can explicitly compute the
Vlasov-type force V and the transport term to obtain the following equation

∂f

∂t
+ ω∇θf + V · ∇ωf =

∫∫∫
(f ′f ′∗ − ff∗) dv∗dθ∗dω∗,

where f = f (v , θ, ω, t), f∗ = f (v∗, θ∗, ω∗, t), and f ′, f ′∗ are the distributions depending on the
post interaction coordinates given by

v ′ = v − (1 + ev )
J

m
n, v ′

∗ = v∗ + (1 + ev )
J

m
n,

ω′ = ω − (1 + eω)JI−1(r × n), ω′
∗ = ω∗ + (1 + eω)JI−1

∗ (r∗ × n),

with

J = − V · n
2
m +

[
I−1(r × n)× r + I−1

∗ (r∗ × n)× r∗
]
· n
.

Notice that θ′ = θ and θ′∗ = θ∗ since the angles are not changed by the collisional operator.
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A Vlasov–type equation

AN EXAMPLE: NEMATIC LIQUID CRYSTALS DSMC SIMULATIONS

Figure: Test 1 - Zero Potential. We here consider the case of no transport, i.e. V(ν, ς) = 0.
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A Vlasov–type equation

AN EXAMPLE: NEMATIC LIQUID CRYSTALS DSMC SIMULATIONS
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Figure: Test 1 - Zero Potential. We here consider the case of no transport, i.e. V(ν, ς) = 0.
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A Vlasov–type equation

Let us consider the mean-field potential is given by

W(ν, ς) =
1

2
α (ν − ν̂) · (ν − ν̂) + β ν · ς.

Under this hypothesis the Vlasov-type force can be computed to be

V(ν, ς) = −α (ν − ν̂)− βς.

This system of ODEs can be recasted as linear system of ODEs, i.e.[
dν i

dt
dς

i

dt

]
=

[
0 1
−α −β

] [
ν i
ς i

]
+ α

[
0
ν̂

]
.

We can immediately see that the fixed points of the system is unique and it is given by ν = ν̂
and ς = 0. It remains to study the stability of the fixed point, which can be done by studying
the eigenvalues of the Jacobian of the system which are given by

λ1,2 =
−β ±

√
β2 − 4α

2
.
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A Vlasov–type equation

AN EXAMPLE: NEMATIC LIQUID CRYSTALS DSMC SIMULATIONS

Figure: Test 2 - Linearised Potential. We here consider the case of a linear potential, i.e.
W(ν, ς) = α (ν − ν̂) · (ν − ν̂) + β ν · ς, with α = 0.1 and β = 0.1. We can observe from the right most
plot that the system exhibits alignment.
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A Vlasov–type equation

AN EXAMPLE: NEMATIC LIQUID CRYSTALS DSMC SIMULATIONS

-5 0 5

vx

0

0.1

0.2

f(vx)

-5 0 5

vy

0

0.1

0.2

f(vy)

-20 0 20

!

0

0.05

0.1
f(!)

-2 0 2

3

0.5

1

1.5
f(3)

Recon
Theo

Figure: Test 2 - Linearised Potential. We here consider the case of a linear potential, i.e.
W(ν, ς) = α (ν − ν̂) · (ν − ν̂) + β ν · ς, with α = 0.1 and β = 0.1. We can observe from the right most
plot that the system exhibits alignment.
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A Vlasov–type equation

AN EXAMPLE: NEMATIC LIQUID CRYSTALS DSMC SIMULATIONS

Figure: Test 3 - Non-Linear Potential. We here consider the case of a non-linear potential, i.e.
W(θ) = α cos(θ − θ̂), with θ̂ = arctan(ν̂y , ν̂x), α = 1 and ν̂ = 1

N

∑N
i=1 ν i . We can observe from the

right most plot that the system exhibits alignment.
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Figure: Test 3 - Non-Linear Potential. We here consider the case of a non-linear potential, i.e.
W(θ) = α cos(θ − θ̂), with θ̂ = arctan(ν̂y , ν̂x), α = 1 and ν̂ = 1

N
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