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EIGENVALUE PROBLEMS IN MAGNETOHYDRODYNAMICS

How do stars and planets generate
magnetic fields?

This mechanism is known as the dynamo
effect and it is described mathematically by
the dynamo eigenvalue problem.

Eigenvalue problems are notoriously difficult to solve numerically, as they may exhibit
spurious eigenmodes in the computed spectrum (among other problems).

We will show how structure-preserving methods can be used to avoid spurious eigen-
modes in the computed spectrum of dynamo operators.
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CHALLENGES IN COMPUTING EIGENVALUES

1



Challenges in computing eigenvalues

THE LAPLACE EIGENVALUE PROBLEM

Laplace eigenvalue problem

−∆u = λu in Ω, u = 0 on ∂Ω.

The standard variational formulation: find u ∈ V := H1
0 (Ω) and λ ∈ C such that

a(u, v) = λm(u, v) ∀ v ∈ V ,

where the bilinear forms are defined as

a(u, v) :=

ˆ
Ω

∇u · ∇v dx , m(u, v) :=

ˆ
Ω

uv dx .

Non-linearity of eigenvalue problems

Eigenvalue problems are non-linear, due to the implicit constraint ∥u∥L2(Ω) = 1.
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Challenges in computing eigenvalues

THE LAPLACE EIGENVALUE PROBLEM

We consider a conforming finite element discretization of the variational formulation:

Discrete weak Laplace eigenvalue problem

Find uh ∈ Vh ⊂ V and λh ∈ C such that ∥uh∥L2(Ω) = 1 and

a(uh, vh) = λhm(uh, vh) ∀ vh ∈ Vh.

Algebraic eigenvalue problem

Find u ∈ CN and λh ∈ C such that

Au = λhMu,

where A and M are the stiffness and mass matrices, respectively.
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Challenges in computing eigenvalues

THE LAPLACE EIGENVALUE PROBLEM: NUMERICAL RESULTS

Adopting the obvious strategy works!

N = 8 N = 16 N = 32 . . . N = ∞

2.07764608 2.01930990 2.00482122 . . . 2
5.33251285 5.08291766 5.02072060 . . . 5
5.53254919 5.13018295 5.03235583 . . . 5
9.18255754 8.30543350 8.07692593 . . . 8
11.6879356 10.3814080 10.0949216 . . . 10
11.8419204 10.3900040 10.0954511 . . . 10
11.6879356 13.5716234 13.1442958 . . . 13
15.2270501 13.9825316 13.2432114 . . . 13
17.0125136 18.0416423 17.2561757 . . . 17
21.3374450 18.0704980 17.2626019 . . . 17
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Challenges in computing eigenvalues

ANOTHER LAPLACE EIGENVALUE PROBLEM

Let us now consider a mixed formulation to preserve the structural distinction between

constitutive relations and conservation laws.

We thus consider the following Laplace eigenvalue problem with Neumann boundary
conditions, in a mixed formulation:

Neumann mixed Laplace eigenvalue problem

Find u ∈ L2(Ω) and λ ∈ C such that ∥u∥L2(Ω) = 1 and for some σ ∈ H0(div; Ω)

(σ, τ)L2 + b(τ, u) = 0 ∀ τ ∈ H0(div; Ω),

b(σ, v) = −λm(u, v) ∀ v ∈ L2(Ω),

where b(τ, v) :=
´
Ω
div τ v dx and (σ, τ)L2 :=

´
Ω
σ · τ dx .
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Challenges in computing eigenvalues

ANOTHER LAPLACE EIGENVALUE PROBLEM

] Boffi–Brezzi–Gastaldi, Math. Comp., 69 (2000).

Discrete Neumann mixed Laplace eigenvalue problem

Find uh ∈ Vh and λh ∈ C such that ∥uh∥L2(Ω) = 1 and for some σh ∈ Σh

(σh, τh)L2 + b(τh, uh) = 0 ∀ τh ∈ Σh,

b(σh, vh) = −λhm(uh, vh) ∀ vh ∈ Vh.

The ‘inf-sup condition’ is necessary and sufficient for well-posedness of the equation.

Q1 − P0

The choice of space pair (Σh,Vh) = (Q1,P0) is inf-sup stable, yet it leads to the
presence of spurious eigenvalues in the computed spectrum!
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Challenges in computing eigenvalues

ANOTHER LAPLACE EIGENVALUE PROBLEM: NUMERICAL RESULTS

Adopting the obvious strategy does not work!

N = 8 N = 16 N = 32 . . . N = ∞

1.01291606 1.00321689 1.00080347 . . . 1
1.01291606 1.00321689 1.00080347 . . . 1
1.99946179 1.99996684 1.99999796 . . . 2
4.20954747 4.05166420 4.01286752 . . . 4
4.20954747 4.05166420 4.01286752 . . . 4

...
...

...
...

...
19.4536673 17.1061707 17.1814052 . . . 17
19.4536673 17.7328645 17.1814052 . . . 17
19.9601253 17.7328645 17.7706910 . . . 18
19.9601253 17.9749153 17.9984795 . . . 18
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Challenges in computing eigenvalues

ANOTHER LAPLACE EIGENVALUE PROBLEM: NUMERICAL RESULTS

P1 − div(P1)

The choice of space pair (Σh,Vh) = (P1, div(P1)) is inf-sup stable (on a criss-cross
mesh), yet it leads to the presence of spurious eigenvalues in the computed spectrum!

N = 8 N = 16 N = 32 . . . N = ∞

1.00427624 1.00107048 1.00026772 . . . 1
1.00427624 1.00107048 1.00026772 . . . 1
2.01711347 2.00428269 2.00107089 . . . 2
4.06803872 4.01710491 4.00428186 . . . 4
4.06803872 4.01710491 4.00428186 . . . 4
5.10634250 5.02673922 5.00669135 . . . 5
5.10634250 5.02673922 5.00669135 . . . 5
5.92293444 5.98074278 5.99518232 . . . 6
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Challenges in computing eigenvalues

AN EQUIVALENT PROBLEM IN ELECTROMAGNETICS

Maxwell eigenvalue problem

Find E ∈ H0(curl; Ω) ∩ H(div; Ω) and ω ∈ C such that ∥E∥L2(Ω) = 1 and

∇× (∇× E) = ω2E in Ω,

∇ · E = 0 in Ω,

E× n = 0 on ∂Ω.

Weak Maxwell eigenvalue problem

Find E ∈ H0(curl; Ω) and ω ∈ C\{0} such that ∥E∥L2(Ω) = 1 and

c(E,F) := (∇× E,∇× F)L2 = ω2m(E,F)L2 ∀F ∈ H0(curl; Ω).
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Challenges in computing eigenvalues

AN EQUIVALENT PROBLEM IN ELECTROMAGNETICS

] Boffi–Brezzi–Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math., 44
(2013).

We introduce a potential variable ψ ∈ H1
0 (Ω) and observe that ∇ψ ∈ H0(curl; Ω) satisfies, in a

distributional sense, the identity
∇̂ × ∇̄ × ψ = ∆ψ,

where ∇̂× and ∇̄× are the scalar and vectorial curl operators in 2D, i.e.

∇̂ × E = ∂xEy − ∂yEx , ∇̄ × ψ =

(
∂xψ

−∂yψ

)
.

Equivalence with the mixed Laplace eigenvalue problem

Let E = ∇̄ × ψ. The potential ψ solves the mixed weak Laplace eigenvalue problem iff
E solves the weak Maxwell eigenvalue problem and σ = ∇ψ is a rotation of E.
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Challenges in computing eigenvalues

MAXWELL EIGENVALUE PROBLEM: NUMERICAL RESULTS P1 ELEMENTS

Adopting the obvious strategy does not work!

N = 8 N = 16 N = 32 . . . N = ∞

−4 · 10−16 −3 · 10−15 −1 · 10−15 . . . 0
...

...
...

...
1.00427624 1.00107044 1.00026768 . . . 1
1.00427624 1.00107044 1.00026768 . . . 1
2.01711339 2.00428261 2.00107081 . . . 2
4.06803863 4.01710482 4.00428176 . . . 4
4.06803863 4.01710482 4.00428176 . . . 4
5.10634234 5.02673907 5.00669120 . . . 5
5.10634234 5.02673907 5.00669120 . . . 5
5.92293444 5.98074278 5.99518232 . . . 6
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Challenges in computing eigenvalues

FINITE ELEMENT EXTERIOR CALCULUS (FEEC): EDGE ELEMENTS

] Hiptmair, Acta Numer., 11 (2002).

Lagrange nodal elements

Using the space P1 of Lagrange nodal elements
leads to spurious eigenvalues in the computed
spectrum for the Maxwell eigenvalue problem.

Nédélec edge elements

Using the space Ned1 of Nédélec edge elements
leads to no spurious eigenvalues in the computed
spectrum for the Maxwell eigenvalue problem.
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Challenges in computing eigenvalues

MAXWELL EIGENVALUE PROBLEM: NUMERICAL RESULTS Ned1 EDGE ELEMENTS

N = 8 N = 16 N = 32 . . . N = ∞

−1 · 10−15 −1 · 10−15 4 · 10−14 . . . 0
...

...
...

...
1.00106352 1.00026725 1.00006688 . . . 1
1.00106352 1.00026725 1.00006688 . . . 1
1.99141760 1.99785719 1.99946443 . . . 2
4.01665445 4.00425409 4.00106901 . . . 4
4.01665445 4.00425409 4.00106901 . . . 4
4.97487849 4.99381206 4.99845856 . . . 5
4.97487849 4.99381206 4.99845856 . . . 5
7.86190171 7.96567040 7.99142874 . . . 8
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Challenges in computing eigenvalues

MIXED LAPLACE EIGENVALUE PROBLEM: NUMERICAL RESULTS

RT1 − P0(Th)

The choice of spaces Σh = RT1 and Vh = P0 leads to
no spurious eigenvalues in the computed spectrum.

N = 8 N = 16 N = 32 . . . N = ∞

1.00106356 1.00026729 1.00006692 . . . 1
1.00106356 1.00026729 1.00006692 . . . 1
1.99141768 1.99785726 1.99946451 . . . 2
4.01665455 4.00425418 4.00106910 . . . 4
4.01665455 4.00425418 4.00106910 . . . 4
4.97487864 4.99381221 4.99845871 . . . 5
4.97487864 4.99381221 4.99845871 . . . 5
7.86190193 7.96567063 7.99142897 . . . 8
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THE DYNAMO EIGENVALUE PROBLEM

2



The dynamo eigenvalue problem

DYNAMO EIGENVALUE PROBLEM

] Arnold–Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sci. (Springer), 125 (1998), Chap
V.

Dynamo eigenvalue problem

Find divergence-free B and λ ∈ C such that
∥B∥L2(Ω) = 1 and

∇× (u× B) + R−1
m ∇×∇× B = λB in Ω,

where u is a given divergence-free vector field and
Rm is the magnetic Reynolds number.
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The dynamo eigenvalue problem

A COMPUTATIONAL APPROACH TO THE DYNAMO EIGENVALUE PROBLEM

] Arnold–Korkina, Moscow Univ. Math. Bull., 38 (1983).

... It is still unknown whether this field (ABC flow) is a fast kinematic dynamo, e.g.,
whether an exponentially growing mode of B survives as Rm → ∞.

...

Numerically, the kinematic fast dynamo problem is the first eigenvalue problem for

matrices of the order of many million, even for reasonable Reynolds numbers (of the

order of hundreds). The physically meaningful magnetic Reynolds numbers Rm are of

order of magnitude 108. The corresponding matrices are (and will remain) beyond

the reach of any computer.

We are not aware of any rigorous study of convergence of the Galerkin method used by
Arnold–Korkina for the dynamo eigenvalue problem.
Are there spurious eigenmodes in the computed spectrum?
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The dynamo eigenvalue problem

DYNAMO EIGENVALUE PROBLEM: KIKUCHI’S FORMULATION

] Boffi–Hu–Liang–Z, manuscript in preparation.

Dynamo eigenvalue problem: Kikuchi’s formulation

Find B ∈ H0(curl; Ω), ψ ∈ H1
0 (Ω) and λ ∈ C such that

c(B,D) + (u × B,∇×D)L2 + d(ψ,D) = λm(B,D) ∀D ∈ H0(curl; Ω),

d(ϕ,B) = 0 ∀ϕ ∈ H1
0 (Ω),

where d(ϕ,D) :=
´
Ω
∇ϕ ·D dx .

This formulation filters zero eigenvalues associated with the divergence constraint.
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The dynamo eigenvalue problem

DYNAMO EIGENVALUE PROBLEM: DISCRETE KIKUCHI’S FORMULATION

] Boffi–Hu–Liang–Z, manuscript in preparation.

Discrete dynamo eigenvalue problem

Find Bh ∈ Vh ⊂ H0(curl; Ω), ψh ∈ Wh ⊂ H1
0 (Ω) and λh ∈ C such that

c(Bh,Dh) + (u× Bh,∇×Dh)L2(Ω) + d(ψh,Dh) = λhm(Bh,Dh) ∀Dh ∈ Vh,

d(ϕh,Bh) = 0 ∀ϕh ∈ Qh.

Corollary of the main theorem: Ned1-P1 works

The edge element discretization Vh = Ned1 and Qh = P1 is convergent: no spurious or
neglected eigenmodes.
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The dynamo eigenvalue problem

DYNAMO EIGENVALUE PROBLEM: HODGE THEORY

Theorem (V. I. Arnold)

The number of zero eigenvalues is not less than the first Betti number of Ω.

If the diffusion coefficient R−1
m is sufficiently large, then the number of zero eigenvalues

is equal to the first Betti number of Ω.
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Theorem (V. I. Arnold)

The number of zero eigenvalues is not less than the first Betti number of Ω.

If the diffusion coefficient R−1
m is sufficiently large, then the number of zero eigenvalues

is equal to the first Betti number of Ω.

b0 = 1, b1 = 1, b2 = 0,u1 = (1, 1)

Rm 100 10 1 0.1

dim(λ0) 1 1 1 1
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DYNAMO EIGENVALUE PROBLEM: HODGE THEORY

Theorem (V. I. Arnold)

The number of zero eigenvalues is not less than the first Betti number of Ω.

If the diffusion coefficient R−1
m is sufficiently large, then the number of zero eigenvalues

is equal to the first Betti number of Ω.

b0 = 1, b1 = 2, b2 = 1,u1 = (1, 1)

Rm 100 10 1 0.1

dim(λ0) 2 2 2 2
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The dynamo eigenvalue problem

DYNAMO EIGENVALUE PROBLEM: WITTEN TRANSFORM

] Arnold–Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sci. (Springer), 125 (1998), Rmk
V.3.15,
Witten, J. Diff. Geom., 17 (1982).

Theorem (C. King)

Let u be a smooth vector field such that
there exists a smooth function ϕ : Ω →
R satisfying u = ∇ϕ. Then the eigen-
values of the dynamo eigenvalue problem
are all real.

Figure: u2 = (2 cos(2x) sin(2y), 2 sin(2x) cos(2y)),
×: P1, ◦: Ned1.
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The dynamo eigenvalue problem

DYNAMO EIGENVALUE PROBLEM: PSEUDOSPECTRA

] Trefethen–Embree, Spectra and Pseudospectra, Princeton Univ. Press (2005), Thm. 15.3.

Eigenvalue analysis is often misleading for assessing
instability for non-normal operators
(AA∗ ̸= A∗A).

Definition (Pseudospectrum)

Let A : X → X be a linear operator on a
Banach space X . For any ϵ > 0, the ϵ-
pseudospectrum of A is defined as

σϵ(A) := {λ ∈ C : ∥(λI−A)−1∥L(X ,X ) > ϵ−1}.
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The dynamo eigenvalue problem

DYNAMO EIGENVALUE PROBLEM: PSEUDOSPECTRA

] Boffi–Hu–Liang–Z, manuscript in preparation.

Main Theorem (Essentially Kato’s first stability estimate)

Let T : X → X be a compact linear operator on a Hilbert space X and consider a
sequence of finite-rank operators Tn : X → X such that

lim
n→∞

∥Tn − T∥L(X,X) = 0.

Then for any ϵ > δ > 0, ∃N > 0 such that for all n > N we have σδ(Tn) ⊂ σϵ(T ).

This is why edge element discretizations of the dynamo eigenvalue problem provide con-
vergent approximations of the pseudospectra of the underlying compact operator.

There will be no spurious or neglected eigenmodes in the spectrum.
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DYNAMOS AND EIGENVALUES

3



Dynamos and eigenvalues

DYNAMO PROBLEMS IN MAGNETOHYDRODYNAMICS

This dynamo problem arises in the generation of magnetic fields in astrophysical objects.

Kinematic Dynamo

A field u is a kinematic dynamo if the magnetic energy ∥B∥L2 grows exponentially in
time, when B solves the magnetic advection-diffusion equation

∂B

∂t
= ∇× (u× B) + R−1

m ∇×∇× B,

where Rm is the magnetic Reynolds number and B is the magnetic field. By Gauss’s law
for magnetism we have

∇ · B = 0.

Does there exist a divergence-free fast kinematic dynamo u on a given domain Ω?
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Dynamos and eigenvalues

CASTING AS AN EIGENVALUE PROBLEM

Arnold tries to relate this question to an eigenvalue problem.

However, his construction was not quite right.

We propose an alternative construction that does work.
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Dynamos and eigenvalues

A CLASSICAL RESULT IN SEMIGROUP THEORY

] Trefethen–Embree, Spectra and Pseudospectra, Princeton Univ. Press (2005), Thm. 15.3.

Growth bound and spectral bound

Let L : X → X be a bounded linear operator on a Banach space X that generates a
C0-semigroup, denoted by etL. Then the following identity holds:

lim sup
t→∞

1

t
log∥etL∥L(X ,X ) = α(L) := sup

{
Re(λ) : λ ∈ σ(L)

}
,

where α(L) is called the spectral abscissa of L and σ(L) is the spectrum of L, i.e.

σ(L) := {λ ∈ C : (λI − L) is not bijective}.
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Dynamos and eigenvalues

A CLASSICAL RESULT IN SEMIGROUP THEORY—ARNOLD’S KINEMATIC DYNAMO

] Arnold–Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sci. (Springer), 125 (1998),
Def. V.1.3.

Arnold’s definition of a fast kinematic dynamo

Consider the linear operator Lu : H2(Ω,R3) → L2(Ω,R3) defined as

Lu(B) := ∇× (u× B) + R−1
m ∇×∇× B,

where u is a divergence-free vector field. If there exists λ0 > 0 such that α(Lu) ≥ λ0 > 0,
for all sufficiently large Rm, then u is a fast kinematic dynamo.
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Lu(B) := ∇× (u× B) + R−1
m ∇×∇× B,

where u is a divergence-free vector field. If there exists λ0 > 0 such that α(Lu) ≥ λ0 > 0,
for all sufficiently large Rm, then u is a fast kinematic dynamo.

The operator Lu : H2(Ω,R3) → L2(Ω,R3) is not a bounded linear operator on a
Banach space, so the previous theorem does not apply.
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Dynamos and eigenvalues

A CLASSICAL RESULT IN SEMIGROUP THEORY—ARNOLD’S KINEMATIC DYNAMO

] Arnold–Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sci. (Springer), 125 (1998),
Def. V.1.3.

Arnold’s definition of a fast kinematic dynamo

Consider the linear operator Lu : H2(Ω,R3) → L2(Ω,R3) defined as

Lu(B) := ∇× (u× B) + R−1
m ∇×∇× B,

where u is a divergence-free vector field. If there exists λ0 > 0 such that α(Lu) ≥ λ0 > 0,
for all sufficiently large Rm, then u is a fast kinematic dynamo.

A possible remedy is to consider the operator Lu : C∞(Ω,R3) → C∞(Ω,R3) but the
theory of semigroups on Fréchet spaces is much more complicated and less developed.
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Dynamos and eigenvalues

GEARHART–PRÜSS THEOREM: A NEW DEFINITION OF A FAST KINEMATIC DYNAMO

] Trefethen–Embree, Spectra and Pseudospectra, Princeton Univ. Press (2005), Thm. 15.4.

Gearhart–Prüss Theorem: pseudospectra instead of spectra

Let L : X → X be a closed linear operator on a Hilbert space X that generates a C0-
semigroup, denoted by etL. Then the following inequality holds:

sup
t≥0

∥etL∥L(X ,X ) ≥ αϵ(L) := sup
ℜ(λ) : λ∈σϵ(L)

ℜ(λ),

where αε(L) is called the pseudospectral abscissa of L and σϵ(L) is the ϵ-
pseudospectrum of L, i.e.

σϵ(L) := {λ ∈ C : ∥(λI − L)−1∥L(X ,X ) > ϵ−1}.
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Dynamos and eigenvalues

GEARHART–PRÜSS THEOREM: A NEW DEFINITION OF A FAST KINEMATIC DYNAMO

The operator Lu : L2(Ω,R3) → L2(Ω,R3), defined distributionally as

Lu(B) := ∇× (u× B) + R−1
m ∇×∇× B,

where u is a divergence-free vector field, is a closed linear operator on the Hilbert space
L2(Ω,R3).

New definition of a fast kinematic dynamo

If there exists λ0 > 0 such that αϵ(Lu) ≥ λ0 > 0, for all sufficiently large Rm and
sufficiently small ϵ, then u is a fast kinematic dynamo.
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Dynamos and eigenvalues

Does our definition coincide with Arnold’s?

Sometimes! They coincide if u is smooth enough.
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Dynamos and eigenvalues

DYNAMO EIGENVALUE PROBLEM: REGULARITY

Lemma (regularity of dynamo eigenfunctions)

Let Ω ⊂ R3 be a smooth domain and u ∈ C∞(Ω,R3) be a smooth divergence-free vector
field. The space of eigenfunctions B ∈ H0(curl; Ω) of the dynamo eigenvalue problem is
contained in Hs(Ω,R3) for s ∈ (1/2, 1] and thus the solution operator

T : L2(Ω) → H0(curl; Ω) ∩ Hs(Ω;R3) ⊂ L2(Ω)

associated to the dynamo eigenvalue problem is compact.

For sufficiently smooth velocity fields u and domains Ω, Arnold’s definition of a fast
kinematic dynamo gives the same meaningful physical behaviour.
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Dynamos and eigenvalues

DYNAMO EIGENVALUE PROBLEM: TRANSIENT PHASE AND PSEUDOSPECTRA

In the transient phase (which is better described by pseudospectra), nonlinear effects can
become dominant, with the asymptotics described by eigenvalues never reached.

Theorem (Thm. 15.2 in Trefethen & Embree)

Let L : X → X be a closed linear operator on a Hilbert
space X that generates a C0-semigroup, denoted by
etL. Then for any τ > 0:

sup
0≤t≤τ

∥etL∥L(X ,X ) ≥
(
eαϵ(L)τ

)(
1 +

eαϵ(L)τ

K

)−1

where K/αϵ(L) = ∥(λI − L)−1∥L(X ,X ) where λ is an
eigenvalue such that ℜ(λ) = αϵ(L).
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Dynamos and eigenvalues

DYNAMO EIGENVALUE PROBLEM: TRANSIENT PHASE AND PSEUDOSPECTRA

Zeldovich’s antidynamo theorem

If the velocity field u is two-dimensional, then no magnetic field can be sustained by the
dynamo mechanism.
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UNIFORM CONVERGENCE OF Tn → T

4



Uniform Convergence of Tn → T

Our main result required the uniform convergence of Tn → T.

We prove this with an extension of Kolata’s argument.

U. Zerbinati FEEC and Dynamo Operators Cambridge, 5th Feb 2026 33 / 43



Uniform Convergence of Tn → T

Our main result required the uniform convergence of Tn → T.

We prove this with an extension of Kolata’s argument.

U. Zerbinati FEEC and Dynamo Operators Cambridge, 5th Feb 2026 33 / 43



Uniform Convergence of Tn → T

KOLATA’S ARGUMENT FOR UNIFORM CONVERGENCE

] Kolata, Numer. Math. , 29 (1978).

Let T : H → X ⊂ H be the solution operator associated to the weak formulation of an
eigenvalue problem and let Xn ⊂ X ⊂ H be finite-dimensional.

▶ Consider the projection operator Πn : X → Xn ⊂ H defined via the bilinear form ◦(·, ·), i.e.

◦(Πnu, vn) = ◦(u, vn) ∀ vn ∈ Xn.

Assume that Πn converges pointwise to the identity operator I : H → H, i.e.

lim
n→∞

∥Πnu − u∥H = 0 ∀ u ∈ H.

▶ By the Banach–Steinhaus theorem, the sequence of operators {Πn}n∈N is uniformly
bounded, i.e. there exists C > 0 such that ∥Πn∥L(X ,H) ≤ C , ∀ n ∈ N.
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Uniform Convergence of Tn → T

KOLATA’S ARGUMENT FOR UNIFORM CONVERGENCE

We assume that the discrete solution operator Tn : H → H is defined as Tn := ΠnT .

▶ We pick a sequence {fn}n∈N in H such that ∥fn∥H = 1 and Tfn ∈ Xn satisfying

∥(T − Tn)∥L(H,H) ≤ ∥(T − Tn)fn∥H +
1

n
.

▶ By compactness of T , there exists a subsequence {Tfnk}k∈N converging to some w ∈ X .

∥(T − Tnk )fnk∥H = ∥(I − Πnk )Tfnk∥H ≤ ∥(I − Πnk )(Tfnk − w)∥H + ∥(I − Πnk )w∥H
≤ C∥Tfnk − w∥X + ∥(I − Πnk )w∥H −→

k→∞
0.
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Uniform Convergence of Tn → T

KOLATA’S ARGUMENT FOR UNIFORM CONVERGENCE

Laplace eigenproblem: X = L2(Ω), ◦(·, ·) = a(·, ·), Xn = P1

In this case Xn is dense in X as n → ∞ and the projection operator Πn converges
pointwise to the identity operator I : X → X .

The operator T : Xn ⊂ L2(Ω) → L2(Ω) is compact since H1(Ω) ⊂⊂ L2(Ω).

Maxwell eigenproblem: X = L2(Ω), ◦(·, ·) = c(·, ·), Xn = P1

Once again Xn is dense in X as n → ∞ and the projection operator Πn converges
pointwise to the identity operator I : X → X .

However, the operator T : Xn ⊂ L2(Ω) → L2(Ω) is not compact since only H0(curl,Ω)∩
H(div,Ω) ⊂⊂ L2(Ω).
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Uniform Convergence of Tn → T

DISCRETE COMPACTNESS

] Kikuchi, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. , 36 (1989).

Definition (Discrete Compactness Property)

A sequence of finite element spaces {Xn}n∈N such that Xn ⊂ X ⊂ H is said to satisfy
the discrete compactness property with respect to X and the pivot space H if for any
sequence {un}n∈N bounded with respect to the norm ∥·∥X , there exists a subsequence
{unk}k∈N that converges strongly in H.

X = L2(Ω), ◦(·, ·) = c(·, ·), Xn = Ned1

The space Ned1 satisfies the discrete compactness property with respect to H0(curl; Ω)
and the pivot space L2(Ω,R3).
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Uniform Convergence of Tn → T

KOLATA ARGUMENT FOR UNIFORM CONVERGENCE

] Ern–Guermond, Springer, (2021).

▶ Assume that we have a projection operator Πn : H → Xn such that ∥Πn∥L(H,H) ≤ C and
Tn := ΠnT .

The construction of such operators is standard in finite element exterior calculus.

▶ If we have the discrete compactness property for the sequence of finite element spaces
{Xn}n∈N, then we can extract from {Tfn}n∈N a subsequence {Tfnk}k∈N converging
strongly in H to some w ∈ H.

∥(T − Tnk )fnk∥H = ∥(I − Πnk )Tfnk∥H ≤ ∥(I − Πnk )(Tfnk − w)∥H + ∥(I − Πnk )w∥H
≤ C∥Tfnk − w∥H + ∥(I − Πnk )w∥H −→

k→∞
0.
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strongly in H to some w ∈ H.

∥(T − Tnk )fnk∥H = ∥(I − Πnk )Tfnk∥H ≤ ∥(I − Πnk )(Tfnk − w)∥H + ∥(I − Πnk )w∥H
≤ C∥Tfnk − w∥H + ∥(I − Πnk )w∥H −→

k→∞
0.
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Uniform Convergence of Tn → T

] The standard available theory for the convergence of FEM approximations of non-selfadjoint compact
eigenvalue problems is Osborn’s theory.

Osborn, Math. Comp. 29 (1975).

Osborn’s theorem about eigenvalues can be proven as a corollary of our main result about
pseudospectra.
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Uniform Convergence of Tn → T

OSBORN THEORY FOR NON-SELFADJOINT EIGENVALUE PROBLEMS

Theorem (Osborn’s Theory for Non-
Selfadjoint Eigenvalue Problems)

Let T : H → H be a compact linear
operator on a Hilbert space H and con-
sider a sequence of finite-rank operators
Tn : H → H such that

lim
n→∞

∥Tn − T∥L(H,H) = 0.

Then the spectrum of the operators T
is convergently approximated by the
spectrum of the operators Tn.
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Uniform Convergence of Tn → T

OSBORN THEORY FOR NON-SELFADJOINT EIGENVALUE PROBLEMS

] Osborn, Math. Comp. 29 (1975).

For non-selfadjoint eigenvalue problems, Osborn’s theory also provides the rate of con-
vergence for the arithmetic mean of the discrete eigenvalues.
However, no estimates are available for the individual eigenvalues.

Open problem: can we provide estimates for the individual eigenvalues of non-selfadjoint
eigenvalue problems?

Partial result: In the case that u = ∇ϕ for some smooth function ϕ : Ω → R, so that
the dynamo eigenvalue problem has only real eigenvalues, we can provide estimates for
the rate of convergence of individual eigenvalues.
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Uniform Convergence of Tn → T

KIKUCHI FORMULATION

The Kikuchi formulation of the dynamo eigenvalue problem reads is a mixed formulation, so we
cannot immediately write Tn = ΠnT .

Boffi–Brezzi–Gastaldi theory

A mixed eigenvalue problem of this type has convergent approximations if:

▶ The bilinear form c(·, ·) is coercive on the kernel of d(·, ·), denoted Kh.

▶ The weak approximability condition holds, i.e. for any (B, ψ) that solves the
continuous Kikuchi formulation, we have

sup
Bh∈Vh

d(Bh, ϕh)

∥Bh∥H(curl,Ω)
−→
h→0

0.

▶ The strong approximability condition on the kernel holds, i.e. for any B that
solves the continuous Kikuchi formulation, we have

inf
Bh∈Kh

∥B− Bh∥H(curl,Ω) −→
h→0

0.
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Uniform Convergence of Tn → T

KIKUCHI FORMULATION

] Boffi–Hu–Liang–Z, manuscript in preparation.

Lemma

There exists a constant α > 0 independent of h such that

c(Bh,Dh) + (u× Bh,∇×Dh)L2(Ω) + αm(Bh,Dh)

is coercive on the kernel of d(·, ·).

Using the discrete compactness property of the Nec1 element space Ned1, we can
prove the strong approximability condition and weak approximability condition for
the Kikuchi formulation of the shifted dynamo eigenvalue problem.
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THANK YOU!

Structure-preserving FEEC methods for spectral and pseudospectral analysis of dynamo
operators

Umberto Zerbinati*, joint work with: Daniele Boffi†, Kaibo Hu*, Yizhou
Liang*, Stefano Zampini†
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