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EIGENVALUE PROBLEMS IN MAGNETOHYDRODYNAMICS

How do stars and planets generate
magnetic fields?

This mechanism is known as the dynamo
effect and it is described mathematically by
the dynamo eigenvalue problem.

Eigenvalue problems are notoriously difficult to solve numerically, as they may exhibit
spurious eigenmodes in the computed spectrum (among other problems).

We will show how structure-preserving methods can be used to avoid spurious eigen-
modes in the computed spectrum of dynamo operators.
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CHALLENGES IN COMPUTING EIGENVALUES




THE LAPLACE EIGENVALUE PROBLEM

Laplace eigenvalue problem

—Au=Xu inQ, u=0 ondQ.
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THE LAPLACE EIGENVALUE PROBLEM

Laplace eigenvalue problem

—Au=Xu inQ, u=0 ondQ.

The standard variational formulation: find u € V := H}(Q) and X € C such that
a(u,v) =m(u,v) VYvev,

where the bilinear forms are defined as

a(u, v) ::/Vu-Vvdx, m(u, v) ::/uvdx.
Q Q
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THE LAPLACE EIGENVALUE PROBLEM b

Laplace eigenvalue problem

—Au=Xu inQ, u=0 ondQ.

The standard variational formulation: find u € V := H}(Q) and X € C such that
a(u,v) =m(u,v) VYvev,

where the bilinear forms are defined as

a(u, v) ::/Vu-Vvdx, m(u, v) :—/uvdx.
Q Q

Non-linearity of eigenvalue problems

Eigenvalue problems are non-linear, due to the implicit constraint ||u||;2(q) = 1.
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THE LAPLACE EIGENVALUE PROBLEM

We consider a conforming finite element discretization of the variational formulation:

Discrete weak Laplace eigenvalue problem

Find up € Vi, C V and Aj € C such that [|up||;2(q) = 1 and

a(uh, Vh) = /\hm(uh, Vh) Vv, € V.
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Challenges in computing eigenvalues

THE LAPLACE EIGENVALUE PROBLEM

We consider a conforming finite element discretization of the variational formulation:

Discrete weak Laplace eigenvalue problem

Find up € Vi, C V and Aj € C such that [|up||;2(q) = 1 and

a(uh, Vh) = /\hm(uh, Vh) Vv, € V.

Algebraic eigenvalue problem

Find u € CN and A\, € C such that

Au = \;Mu,

where A and M are the stiffness and mass matrices, respectively.
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THE LAPLACE EIGENVALUE PROBLEM: NUMERICAL RESULTS

Adopting the obvious strategy works!

N=38 N =16 N =32 N = oo
2.07764608 2.01930990 2.00482122 2
5.33251285 5.08291766 5.02072060 5
5.563254919 5.13018295 5.03235583 5
9.18255754 8.30543350 8.07692593 8
11.6879356 10.3814080 10.0949216 10
11.8419204 10.3900040 10.0954511 10
11.6879356 13.5716234 13.1442958 13
15.2270501 13.9825316 13.2432114 13
17.0125136 18.0416423 17.2561757 17
21.3374450 18.0704980 17.2626019 17
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ANOTHER LAPLACE EIGENVALUE PROBLEM

Let us now consider a mixed formulation to preserve the structural distinction between

constitutive relations and conservation laws.
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ANOTHER LAPLACE EIGENVALUE PROBLEM

Let us now consider a mixed formulation to preserve the structural distinction between
constitutive relations and conservation laws.

We thus consider the following Laplace eigenvalue problem with Neumann boundary
conditions, in a mixed formulation:

Neumann mixed Laplace eigenvalue problem
Find u € [%(Q2) and A € C such that [|u||,2@@) = 1 and for some o € Hy(div; Q)

(0,7)i2 + b(7,u) =0 V7 € Ho(div; Q),
b(o,v) = —Am(u, v) Vv e L3(Q),

where b(7,v) = [, divT vdx and (o,7)2 = [y0 -7 dx.
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ANOTHER LAPLACE EIGENVALUE PROBLEM

. Boffi-Brezzi—Gastaldi, Math. Comp., 69 (2000).

Discrete Neumann mixed Laplace eigenvalue problem

Find uj, € Vi, and \j € C such that [|u||2(q) = 1 and for some o), € X},
((Th,Th)L2+b(Th,Llh)IO VThEZh,
b(O’h, Vh) = —/\hm(uh, V/-,) Vv, € V.
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ANOTHER LAPLACE EIGENVALUE PROBLEM

. Boffi-Brezzi—Gastaldi, Math. Comp., 69 (2000).

Discrete Neumann mixed Laplace eigenvalue problem

Find uj, € Vi, and \j € C such that [|u||2(q) = 1 and for some o), € X},
((Th,Th)L2+b(Th,Uh)IO VThEZh,
b(O’h, Vh) = —/\hm(uh, V/.,) Vv, € V.

The ‘inf-sup condition’ is necessary and sufficient for well-posedness of the equation.
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ANOTHER LAPLACE EIGENVALUE PROBLEM

. Boffi-Brezzi—Gastaldi, Math. Comp., 69 (2000).

Discrete Neumann mixed Laplace eigenvalue problem

Find uj, € Vi, and \j € C such that [|u||2(q) = 1 and for some o), € X},
(Jh,Th)L2+b(Th,Uh):0 VThEZh,
b(O’h, Vh) = —/\hm(uh, Vh) Vv, € V.

The ‘inf-sup condition’ is necessary and sufficient for well-posedness of the equation.

The choice of space pair (X4, Vi) = (Q1, Po) is inf-sup stable, yet it leads to the
presence of spurious eigenvalues in the computed spectrum!
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Challenges in computing eigenvalues

ANOTHER LAPLACE EIGENVALUE PROBLEM: NUMERICAL RESULTS

Adopting the obvious strategy does not work!

N=38 N =16 N =32 N = oo
1.01291606  1.00321689  1.00080347 1
1.01291606  1.00321689  1.00080347 1
1.99946179  1.99996684  1.99999796 2
4.20954747  4.05166420  4.01286752 4
4.20954747  4.05166420  4.01286752 4
19.4536673  17.1061707  17.1814052 17
19.4536673  17.7328645  17.1814052 17
19.9601253  17.7328645  17.7706910 18
19.9601253 17.9749153 17.9984795 18
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Challenges in computing eigenvalues

ANOTHER LAPLACE EIGENVALUE PROBLEM: NUMERICAL RESULTS

The choice of space pair (X5, Vi) = (P1,div(Py)) is inf-sup stable (on a criss-cross
mesh), yet it leads to the presence of spurious eigenvalues in the computed spectrum!

N =38 N =16 N =32 N = o0
1.00427624  1.00107048  1.00026772 1
1.00427624  1.00107048  1.00026772 1
2.01711347  2.00428269  2.00107089 2
4.06803872  4.01710491  4.00428186 4
4.06803872  4.01710491  4.00428186 4
5.10634250  5.02673922  5.00669135 5
5.10634250  5.02673922  5.00669135 5
5.92293444 5.98074278 5.99518232 6

Oxford
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AN EQUIVALENT PROBLEM IN ELECTROMAGNETICS

Maxwell eigenvalue problem

Find E € Ho(curl; Q) N H(div; ) and w € C such that [|E[[;2(q) = 1 and

V x (V x E) = w’E in Q,
V-E=0 in Q,
Exn=0 on 0L.

Weak Maxwell eigenvalue problem

Find E € Ho(curl; Q) and w € C\{0} such that [|E[[;2(q) = 1 and

c(E,F) :=(V X E,V x F);2 = w?m(E,F)> VF € Hp(curl; Q).
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AN EQUIVALENT PROBLEM IN ELECTROMAGNETICS

. Boffi-Brezzi—Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math., 44
(2013).

We introduce a potential variable ¢ € H}(Q) and observe that V1) € Hy(curl; Q) satisfies, in a
distributional sense, the identity _

V x V x = Ay,
where Vx and ¥V x are the scalar and vectorial curl operators in 2D, i.e.

A - Oy
Vx E=0E,-0/E,, V = .
. oo xw <_8y¢ )
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AN EQUIVALENT PROBLEM IN ELECTROMAGNETICS

. Boffi-Brezzi—Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math., 44
(2013).

We introduce a potential variable ¢ € H}(Q) and observe that V1) € Hy(curl; Q) satisfies, in a
distributional sense, the identity _

V x V x = Ay,
where Vx and ¥V x are the scalar and vectorial curl operators in 2D, i.e.

. ; o
U x E=0E, —8,E, Vxi= <—8j:¢ )

Equivalence with the mixed Laplace eigenvalue problem

Let E = V x 1. The potential 1) solves the mixed weak Laplace eigenvalue problem iff
E solves the weak Maxwell eigenvalue problem and o = V4 is a rotation of E.
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Challenges in computing eigenvalues

MAXWELL EIGENVALUE PROBLEM: NUMERICAL RESULTS P; ELEMENTS

Adopting the obvious strategy does not work!

N=8 N =16 N =32 N = oo
—4.10°16 —3.10715 =il - 1= 0
1.00427624  1.00107044  1.00026768 1
1.00427624  1.00107044  1.00026768 1
2.01711339  2.00428261  2.00107081 2
4.06803863  4.01710482  4.00428176 4
4.06803863  4.01710482  4.00428176 4
5.10634234  5.02673907  5.00669120 5
5.10634234  5.02673907  5.00669120 5
5.92293444 5.98074278 5.99518232 6
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Challenges in computing eigenvalues

FINITE ELEMENT EXTERIOR CALCULUS (FEEC): EDGE ELEMENTS

[. Hiptmair, Acta Numer., 11 (2002).

Lagrange nodal elements

Using the space P; of Lagrange nodal elements
leads to spurious eigenvalues in the computed
spectrum for the Maxwell eigenvalue problem.

Oxford U. Zerbinati FEEC and Dynamo Operators Cambridge, 5th Feb 2026
Mathematics N
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Challenges in computing eigenvalues

FINITE ELEMENT EXTERIOR CALCULUS (FEEC): EDGE ELEMENTS

[. Hiptmair, Acta Numer., 11 (2002).

Lagrange nodal elements

Using the space P; of Lagrange nodal elements
leads to spurious eigenvalues in the computed
spectrum for the Maxwell eigenvalue problem.

Nédélec edge elements

Using the space Ned; of Nédélec edge elements
leads to no spurious eigenvalues in the computed
spectrum for the Maxwell eigenvalue problem.

Oxford " . .
Mathematics U. Zerbinati FEEC and Dynamo Operators

Cambridge, 5th Feb 2026
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Challenges in computing eigenvalues

MAXWELL EIGENVALUE PROBLEM: NUMERICAL RESULTS Ned; EDGE ELEMENTS

N=38 N =16 N =32 =
—1-107% —1-1071° 4.10714 0
1.00106352  1.00026725  1.00006688 1
1.00106352  1.00026725  1.00006688 1
1.99141760  1.99785719  1.99946443 2
4.01665445  4.00425409  4.00106901 4
4.01665445  4.00425409  4.00106901 4
4.97487849  4.99381206  4.99845856 5
497487849  4.99381206  4.99845856 5
7.86190171 7.96567040 7.99142874 8
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MIXED LAPLACE EIGENVALUE PROBLEM: NUMERICAL RESULTS

Challenges in computing eigenvalues

The choice of spaces ¥, = RT; and V}, = Py leads to
no spurious eigenvalues in the computed spectrum.

N=38 N =16 N =32 N =0
1.00106356  1.00026729  1.00006692 1
1.00106356  1.00026729  1.00006692 1
1.99141768  1.99785726  1.99946451 2
4.01665455  4.00425418  4.00106910 4
4.01665455  4.00425418  4.00106910 4
497487864  4.99381221  4.99845871 5
497487864  4.99381221  4.99845871 5
7.86190193 7.96567063 7.99142897 8
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THE DYNAMO EIGENVALUE PROBLEM




DYNAMO EIGENVALUE PROBLEM

. Arnold—Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sci. (Springer), 125 (1998), Chap
V.

Dynamo eigenvalue problem

Find divergence-free B and A € C such that
HB||L2(Q) =1 and

VxuxB)+RIVxVxB=)B inQ,

where u is a given divergence-free vector field and
R, is the magnetic Reynolds number.
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A COMPUTATIONAL APPROACH TO THE DYNAMO EIGENVALUE PROBLEM

M Amold-Korkina, Moscow Univ. Math. Bull., 38 (1983).

... It is still unknown whether this field (ABC flow) is a fast kinematic dynamo, e.g.,
whether an exponentially growing mode of B survives as R, — oc.

Numerically, the kinematic fast dynamo problem is the first eigenvalue problem for
matrices of the order of many million, even for reasonable Reynolds numbers (of the
order of hundreds). The physically meaningful magnetic Reynolds numbers R are of
order of magnitude 10°. The corresponding matrices are (and will remain) beyond
the reach of any computer.
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A COMPUTATIONAL APPROACH TO THE DYNAMO EIGENVALUE PROBLEM

M Amold-Korkina, Moscow Univ. Math. Bull., 38 (1983).

... It is still unknown whether this field (ABC flow) is a fast kinematic dynamo, e.g.,
whether an exponentially growing mode of B survives as R, — oc.

Numerically, the kinematic fast dynamo problem is the first eigenvalue problem for
matrices of the order of many million, even for reasonable Reynolds numbers (of the
order of hundreds). The physically meaningful magnetic Reynolds numbers R are of
order of magnitude 10°. The corresponding matrices are (and will remain) beyond
the reach of any computer.

We are not aware of any rigorous study of convergence of the Galerkin method used by
Arnold—Korkina for the dynamo eigenvalue problem.
Are there spurious eigenmodes in the computed spectrum?
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DYNAMO EIGENVALUE PROBLEM: KIKUCHI'S FORMULATION

I Boffi-Hu—Liang—Z, manuscript in preparation.

Dynamo eigenvalue problem: Kikuchi’'s formulation

Find B € Hp(curl;Q2), v € H}(Q) and X € C such that

¢(B,D) + (u x B,V x D)2 + d(1), D) = Am(B, D) VD € Ho(curl; Q),
d(¢.B) =0 Vo € Hi(Q),

where d(¢,D) = [, V¢ - Ddx.

Oxford
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DYNAMO EIGENVALUE PROBLEM: KIKUCHI'S FORMULATION

I Boffi-Hu—Liang—Z, manuscript in preparation.

Dynamo eigenvalue problem: Kikuchi’'s formulation

Find B € Hp(curl;Q2), v € H}(Q) and X € C such that

¢(B,D) + (u x B,V x D)2 + d(1), D) = Am(B, D) VD € Ho(curl; Q),
d(¢.B) =0 Vo € Hi(Q),

where d(¢,D) = [, V¢ - Ddx.

This formulation filters zero eigenvalues associated with the divergence constraint.

Oxford
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DYNAMO EIGENVALUE PROBLEM: DISCRETE KIKUCHI'S FORMULATION

. Boffi-Hu—Liang—Z, manuscript in preparation.

Discrete dynamo eigenvalue problem

Find By, € Vi, C Ho(curl; Q), v, € W, C HE(Q) and Aj € C such that

C(Bh7 Dh) + (u x Bp, V x Dh)LZ(Q) + d(@bh, Dh) = /\hm(Bh, Dh) VD, € Vy,
d(¢n,Bn) =0 Von € Q.

Oxford
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The dynamo eigenvalue problem

DYNAMO EIGENVALUE PROBLEM: DISCRETE KIKUCHI’'S FORMULATION

7

. Boffi-Hu—Liang—Z, manuscript in preparation.

| r
\

Discrete dynamo eigenvalue problem
Find By, € Vi, C Ho(curl; Q), v, € W, C HE(Q) and Aj € C such that

C(Bh, Dh) T (u x Bp, V x Dh)LZ(Q) =F d(¢h, Dh) = )\hm(Bh, Dh) V Dy € Vy,
d(¢n, Bn) =0 Vén € Qn.

Corollary of the main theorem: Ned;-P; works

The edge element discretization V, = Ned; and @, = Py is convergent: no spurious or
neglected eigenmodes.

Oxford J. Zerbina “EEC and Dynamo Operato Cambridge, 5th Feb 2026
. U. Zerbinati FEEC and Dynamo Operators ,mbridge, 5th Feb 2026



DYNAMO EIGENVALUE PROBLEM: HODGE THEORY

Theorem (V. I. Arnold)

The number of zero eigenvalues is not less than the first Betti number of Q.

If the diffusion coefficient R, is sufficiently large, then the number of zero eigenvalues
is equal to the first Betti number of €.
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DYNAMO EIGENVALUE PROBLEM: HODGE THEORY

Theorem (V. I. Arnold)

The number of zero eigenvalues is not less than the first Betti number of Q.

If the diffusion coefficient R, is sufficiently large, then the number of zero eigenvalues
is equal to the first Betti number of €.

bozl,blzl,bzzo,ulz(l,l)
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DYNAMO EIGENVALUE PROBLEM: HODGE THEORY

Theorem (V. I. Arnold)

The number of zero eigenvalues is not less than the first Betti number of Q.

If the diffusion coefficient R, is sufficiently large, then the number of zero eigenvalues
is equal to the first Betti number of €.

bp=1,by=2,bp =1,u; = (1,1)

Oxford

Mathematics



The dynamo eigenvalue problem

DYNAMO EIGENVALUE PROBLEM: WITTEN TRANSFORM

. Arnold—Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sci. (Springer), 125 (1998), Rmk
V.3.15,
Witten, J. Diff. Geom., 17 (1982).

Dynamo Pseudo-Spectra Re=1.0e+00, u,, Kikuchi

P ——

Theorem (C. King) :

Let u be a smooth vector field such that
there exists a smooth function ¢ : Q —
R satisfying u = V¢. Then the eigen-
values of the dynamo eigenvalue problem
are all real.

Figure: uz = (2 cos(2x) sin(2y), 2 sin(2x) cos(2y)),
x: P1, o: Ned;.
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The dynamo eigenvalue problem

DYNAMO EIGENVALUE PROBLEM: PSEUDOSPECTRA

. Trefethen—Embree, Spectra and Pseudospectra, Princeton Univ. Press (2005), Thm. 15.3.

Eigenvalue analysis is often misleading for assessing _—
instability for non-normal operators /:/:j‘x\\
(AA* # A*A). (7 ~\ O\ N\
I \-} AN
Definition (Pseudospectrum) ‘,f;//'),_,,_‘;\ AN
//,/" / /’/’,,7 N ;R S \\
Let A : X — X be a linear operator on a ’/ // / ) ]\ r‘\ \ ) \
Banach space X. For any € > 0, the e (/7 ' / / oY) ) )
pseudospectrum of A is defined as ! \ ( //'// \7/ / /
N, \\ ~—— / yd T "‘k.‘r_ ///
_ _ ~__— —
o(A)={AeC: [|[(M=A)yxx) >e '} \5\/;/ —
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DYNAMO EIGENVALUE PROBLEM: PSEUDOSPECTRA

Boffi-Hu—Liang—Z, manuscript in preparation.

Main Theorem (Essentially Kato's first stability estimate)

Let T : X — X be a compact linear operator on a Hilbert space X and consider a
sequence of finite-rank operators T, : X — X such that

lim ||Tn — T”L(X,X) = 0
n—oo

Then for any € > ¢ > 0, AN > 0 such that for all n > N we have o5(T,) C o.(T).

This is why edge element discretizations of the dynamo eigenvalue problem provide con-
vergent approximations of the pseudospectra of the underlying compact operator.
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The dynamo eigenvalue problem

DYNAMO EIGENVALUE PROBLEM: PSEUDOSPECTRA

Boffi-Hu—Liang—Z, manuscript in preparation.

Main Theorem (Essentially Kato's first stability estimate)

Let T : X — X be a compact linear operator on a Hilbert space X and consider a
sequence of finite-rank operators T, : X — X such that

lim ||Tn — T”L(X,X) = 0
n—oo

Then for any € > ¢ > 0, AN > 0 such that for all n > N we have o5(T,) C o.(T).

This is why edge element discretizations of the dynamo eigenvalue problem provide con-
vergent approximations of the pseudospectra of the underlying compact operator.
There will be no spurious or neglected eigenmodes in the spectrum.

Oxford
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DYNAMOS AND EIGENVALUES




DYNAMO PROBLEMS IN MAGNETOHYDRODYNAMICS

This dynamo problem arises in the generation of magnetic fields in astrophysical objects.
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DYNAMO PROBLEMS IN MAGNETOHYDRODYNAMICS

This dynamo problem arises in the generation of magnetic fields in astrophysical objects.

Kinematic Dynamo

A field u is a kinematic dynamo if the magnetic energy ||B|/;> grows exponentially in
time, when B solves the magnetic advection-diffusion equation

B
%:Vx(uxB)+R;1VxVxB,
where R, is the magnetic Reynolds number and B is the magnetic field. By Gauss’s law
for magnetism we have
V.-B=0.
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DYNAMO PROBLEMS IN MAGNETOHYDRODYNAMICS

This dynamo problem arises in the generation of magnetic fields in astrophysical objects.

Kinematic Dynamo

A field u is a kinematic dynamo if the magnetic energy ||B|/;> grows exponentially in
time, when B solves the magnetic advection-diffusion equation

B
%:VX(UXB)+R;1VXVXB,
where R, is the magnetic Reynolds number and B is the magnetic field. By Gauss’s law
for magnetism we have
V.-B=0.

Does there exist a divergence-free fast kinematic dynamo u on a given domain Q7

Oxford
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CASTING AS AN EIGENVALUE PROBLEM

Arnold tries to relate this question to an eigenvalue problem.
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CASTING AS AN EIGENVALUE PROBLEM

Arnold tries to relate this question to an eigenvalue problem.

However, his construction was not quite right.
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CASTING AS AN EIGENVALUE PROBLEM

Arnold tries to relate this question to an eigenvalue problem.

However, his construction was not quite right.

[ We propose an alternative construction that does work.
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A CLASSICAL RESULT IN SEMIGROUP THEORY

. Trefethen—Embree, Spectra and Pseudospectra, Princeton Univ. Press (2005), Thm. 15.3.

Growth bound and spectral bound

Let L : X — X be a bounded linear operator on a Banach space X that generates a
Co-semigroup, denoted by et. Then the following identity holds:

1
limsup — Iog||etL||,_(X,X) = (L) =sup {Re()\) A€ O’(L)},
t—o00 t

where (L) is called the spectral abscissa of L and o(L) is the spectrum of L, i.e.

o(L) ={A € C : (M — L) is not bijective}.

Oxford
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Dynamos and eigenvalues

A CLASSICAL RESULT IN SEMIGROUP THEORY—ARNOLD’S KINEMATIC DYNAMO

. Arnold—Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sci. (Springer), 125 (1998),
Def. V.1.3.

Arnold’s definition of a fast kinematic dynamo

Consider the linear operator L, : H*(2,R®) — L2(Q, R3) defined as
L,(B) =V x (uxB)+ R, 'V xV xB,

where u is a divergence-free vector field. If there exists A\g > 0 such that «(L,) > Ao > 0,
for all sufficiently large R,,, then u is a fast kinematic dynamo.
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A CLASSICAL RESULT IN SEMIGROUP THEORY—ARNOLD'’S KINEMATIC DYNAMO

. Arnold—Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sci. (Springer), 125 (1998),
Def. V.1.3.

Arnold’s definition of a fast kinematic dynamo

Consider the linear operator L, : H*(2,R®) — L2(Q, R3) defined as
L,(B) =V x (uxB)+ R, 'V xV xB,

where u is a divergence-free vector field. If there exists A\g > 0 such that «(L,) > Ao > 0,
for all sufficiently large R,,, then u is a fast kinematic dynamo.

The operator L, : H*(Q,R3) — L?(,R3) is not a bounded linear operator on a
Banach space, so the previous theorem does not apply.

\. J
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Dynamos and eigenvalues

A CLASSICAL RESULT IN SEMIGROUP THEORY—ARNOLD’S KINEMATIC DYNAMO

Arnold—Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sci. (Springer), 125 (1998),
Def. V.1.3.

Arnold’s definition of a fast kinematic dynamo

Consider the linear operator L, : H*(2,R®) — L2(Q, R3) defined as
L,(B) =V x (uxB)+ R, 'V xV xB,

where u is a divergence-free vector field. If there exists A\g > 0 such that «(L,) > Ao > 0,
for all sufficiently large R,,, then u is a fast kinematic dynamo.

A possible remedy is to consider the operator L, : C*°(Q,R?) — C>(Q,R?) but the
theory of semigroups on Fréchet spaces is much more complicated and less developed.
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GEARHART-PRUSS THEOREM: A NEW DEFINITION OF A FAST KINEMATIC DYNAMO

Trefethen—Embree, Spectra and Pseudospectra, Princeton Univ. Press (2005), Thm. 15.4.

Gearhart—Priiss Theorem: pseudospectra instead of spectra

Let L : X — X be a closed linear operator on a Hilbert space X that generates a Cp-
semigroup, denoted by ett. Then the following inequality holds:

sup [[e™|lLx.x) = (L) = sup  R(N),
t>0 R(N) : A€ae(L)

where a.(L) is called the pseudospectral abscissa of L and o.(L) is the e-
pseudospectrum of L, i.e.

o(L) ={AeC: [(M = L) Hluxx) >
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GEARHART-PRUSS THEOREM: A NEW DEFINITION OF A FAST KINEMATIC DYNAMO

The operator L, : L?(2,R?) — L2(Q, R3), defined distributionally as
Ly(B) =V x (uxB)+ RV x V x B,

where u is a divergence-free vector field, is a closed linear operator on the Hilbert space
L2(Q,R3).
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Dynamos and eigenvalues

GEARHART-PRUSS THEOREM: A NEW DEFINITION OF A FAST KINEMATIC DYNAMO n

The operator L, : L2(,R3) — L2(Q,R3?), defined distributionally as
L,(B) =V x (uxB)+ R,V xV x B,

where u is a divergence-free vector field, is a closed linear operator on the Hilbert space
L2(Q,R3).

New definition of a fast kinematic dynamo

If there exists A\g > 0 such that a.(L,) > Ao > 0, for all sufficiently large R, and
sufficiently small ¢, then u is a fast kinematic dynamo.
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Dynamos and eigenvalues

[ Does our definition coincide with Arnold’s?
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Dynamos and eigenvalues

Does our definition coincide with Arnold’s?

Sometimes! They coincide if u is smooth enough.
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DYNAMO EIGENVALUE PROBLEM: REGULARITY

Lemma (regularity of dynamo eigenfunctions)

Let Q C R3 be a smooth domain and u € C*°(Q, R%) be a smooth divergence-free vector
field. The space of eigenfunctions B € Hy(curl; Q) of the dynamo eigenvalue problem is
contained in H5(Q,R®) for s € (1/2,1] and thus the solution operator

T : [%(Q) — Ho(curl; Q) N HS(QR3) C L2(Q)

associated to the dynamo eigenvalue problem is compact.

For sufficiently smooth velocity fields u and domains Q, Arnold’s definition of a fast
kinematic dynamo gives the same meaningful physical behaviour.
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Dynamos and eigenvalues

DYNAMO EIGENVALUE PROBLEM: TRANSIENT PHASE AND PSEUDOSPECTRA

In the transient phase (which is better described by pseudospectra), nonlinear effects can
become dominant, with the asymptotics described by eigenvalues never reached.

transient approximately determined by o, (A):
pseudospectral abscissae . (

slope determined by o(A):
spectral abscissa a(A)

|
|
\
\

slope determined by W (A
numerical abscissa w(A)

):

0
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DYNAMO EIGENVALUE PROBLEM: TRANSIENT PHASE AND PSEUDOSPECTRA

In the transient phase (which is better described by pseudospectra), nonlinear effects can
become dominant, with the asymptotics described by eigenvalues never reached.

Theorem (Thm. 15.2 in Trefethen & Embree)

\
Let L : X — X be a closed linear operator on a Hilbert L e el ‘
space X that generates a Cy-semigroup, denoted by g \
slope determined by o(A):
et Then for any 7 > 0: @ o gpiml abocissa otA) |
eae T ) |
sup [le |l x.x) > (eae“’T) 1+ L calimricsimieAr
0<t<r ' K
where K/a.(L) = [[((A — L) | (x,x) where X is an 0 - ‘

eigenvalue such that R(\) = a.(L).
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DYNAMO EIGENVALUE PROBLEM: TRANSIENT PHASE AND PSEUDOSPECTRA

Dynamo Pseudo-Spectra Re= Edge Dynamo Pseudo-Spectra Re=1.0e+00, u,, Edge
—— =

Zeldovich’s antidynamo theorem

If the velocity field u is two-dimensional, then no magnetic field can be sustained by the
dynamo mechanism.
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UNIFORM CONVERGENCE OF T, —» T




Uniform Convergence of Ty — T

Our main result required the uniform convergence of T,, — T.
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Uniform Convergence of T — T

Our main result required the uniform convergence of T,, — T.

We prove this with an extension of Kolata's argument.
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KOLATA’S ARGUMENT FOR UNIFORM CONVERGENCE

M Kolata, Numer. Math. , 29 (1978).

Let T : H— X C H be the solution operator associated to the weak formulation of an
eigenvalue problem and let X,, C X C H be finite-dimensional.

Oxford
Mathematics



KOLATA’S ARGUMENT FOR UNIFORM CONVERGENCE

M Kolata, Numer. Math. , 29 (1978).

Let T : H— X C H be the solution operator associated to the weak formulation of an
eigenvalue problem and let X,, C X C H be finite-dimensional.

» Consider the projection operator 1, : X — X, C H defined via the bilinear form o(-, ), i.e.

o(Myu, vy) =o(u,v,) Vv, € X,

Oxford
Mathematics



KOLATA’S ARGUMENT FOR UNIFORM CONVERGENCE

M Kolata, Numer. Math. , 29 (1978).

Let T : H— X C H be the solution operator associated to the weak formulation of an
eigenvalue problem and let X,, C X C H be finite-dimensional.

» Consider the projection operator 1, : X — X, C H defined via the bilinear form o(-, ), i.e.

o(Myu, vy) =o(u,v,) Vv, € X,

Assume that I1,, converges pointwise to the identity operator | : H — H, i.e.

lim [|[Myu—ullp=0 VYueH.
n—o0
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KOLATA’S ARGUMENT FOR UNIFORM CONVERGENCE

M Kolata, Numer. Math. , 29 (1978).

Let T : H— X C H be the solution operator associated to the weak formulation of an
eigenvalue problem and let X,, C X C H be finite-dimensional.

» Consider the projection operator 1, : X — X, C H defined via the bilinear form o(-, ), i.e.

o(Myu, vy) =o(u,v,) Vv, € X,

Assume that I1,, converges pointwise to the identity operator | : H — H, i.e.

lim [|[Myu—ullp=0 VYueH.
n—o0

» By the Banach—Steinhaus theorem, the sequence of operators {I1,},cn is uniformly
bounded, i.e. there exists C > 0 such that ||, z(x,n) < C, VneN.
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KOLATA’S ARGUMENT FOR UNIFORM CONVERGENCE

[ We assume that the discrete solution operator T, : H — H is defined as T, =T1,T. ]
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KOLATA’S ARGUMENT FOR UNIFORM CONVERGENCE

[ We assume that the discrete solution operator T, : H — H is defined as T, =T1,T. ]

» We pick a sequence {f,}nen in H such that ||f,]|y = 1 and Tf, € X, satisfying

1
ICT = To)lleeu,my < T — To)fallw + .
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KOLATA’S ARGUMENT FOR UNIFORM CONVERGENCE

[ We assume that the discrete solution operator T, : H — H is defined as T, =T1,T. ]

» We pick a sequence {f,}nen in H such that ||f,]|y = 1 and Tf, € X, satisfying

1
ICT = To)lleeu,my < T — To)fallw + e

» By compactness of T, there exists a subsequence { Tf,, }«en converging to some w € X.

1T = TodVfaulln = 10 = M) Tl < 107 = Mo )(Th, = w)lls + 1101 = P )l
< ClIThy, — wlix + U/ = Mo )wlls — .
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Uniform Convergence of T — T

KOLATA’'S ARGUMENT FOR UNIFORM CONVERGENCE

Laplace eigenproblem: X = L(R2), o(:,-) = a(-,-), Xn = P1

In this case X, is dense in X as n — oo and the projection operator [, converges
pointwise to the identity operator / : X — X.

The operator T : X, C L2(Q) — L2(R) is compact since H}(Q) cC L?(9).
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KOLATA’S ARGUMENT FOR UNIFORM CONVERGENCE

Laplace eigenproblem: X = L(R2), o(:,-) = a(-,-), Xn = P1

In this case X, is dense in X as n — oo and the projection operator [, converges
pointwise to the identity operator / : X — X.

The operator T : X, C L2(Q) — L2(R) is compact since H}(Q) cC L?(9).

Maxwell eigenproblem: X = L2(R), o(-, -

Once again X, is dense in X as n — oo and the projection operator [, converges
pointwise to the identity operator / : X — X.

However, the operator T : X, C Lx(2) — L2(f2) is not compact since only Ho(curl, 2)N
H(div, Q) cC L>(RQ).
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Uniform Convergence of T — T

DISCRETE COMPACTNESS

[. Kikuchi, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. , 36 (1989). ]

Definition (Discrete Compactness Property)

A sequence of finite element spaces {X,}qen such that X, € X C H is said to satisfy
the discrete compactness property with respect to X and the pivot space H if for any
sequence {u,},en bounded with respect to the norm ||-||x, there exists a subsequence
{up, }ken that converges strongly in H.

X = L2(R), o(-,-) = ¢(-,-), X = Ned;

The space Ned; satisfies the discrete compactness property with respect to Ho(curl; Q)
and the pivot space L%(Q2, R3).

Oxford | Zerb d Dvnamo Oper Capliti. G “eb 2026
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KOLATA ARGUMENT FOR UNIFORM CONVERGENCE

M Ern—Guermond, Springer, (2021).

» Assume that we have a projection operator M, : H — X, such that |[[,||z(4,#) < C and
T, =MN,T.
The construction of such operators is standard in finite element exterior calculus.
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Uniform Convergence of Tp — T

KOLATA ARGUMENT FOR UNIFORM CONVERGENCE

M Ern—Guermond, Springer, (2021).

» Assume that we have a projection operator M, : H — X, such that |[[,||z(4,#) < C and
T, =0,T.
The construction of such operators is standard in finite element exterior calculus.
» If we have the discrete compactness property for the sequence of finite element spaces
{Xn}nen, then we can extract from { Tf,}hen a subsequence { Tf,, }xen converging
strongly in H to some w € H.
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KOLATA ARGUMENT FOR UNIFORM CONVERGENCE

M Ern—Guermond, Springer, (2021).

» Assume that we have a projection operator M, : H — X, such that |[[,||z(4,#) < C and
T, =nN,T.

The construction of such operators is standard in finite element exterior calculus.

» If we have the discrete compactness property for the sequence of finite element spaces

{Xn}nen, then we can extract from { Tf,}hen a subsequence { Tf,, }xen converging
strongly in H to some w € H.

1T = Tod ol = 0 = Pa) Tyl < 107 = M, (T, = W)l + 101 = Ml Yl
< | Thy, = wll+ (/= M )wlln — 0.
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Uniform Convergence of Ty — T

. The standard available theory for the convergence of FEM approximations of non-selfadjoint compact
eigenvalue problems is Osborn's theory.

Osborn, Math. Comp. 29 (1975).
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Uniform Convergence of T — T

-~

. The standard available theory for the convergence of FEM approximations of non-selfadjoint compact
eigenvalue problems is Osborn's theory.

Osborn, Math. Comp. 29 (1975).

Osborn’s theorem about eigenvalues can be proven as a corollary of our main result about
pseudospectra.
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Uniform Convergence of Ty — T

OSBORN THEORY FOR NON-SELFADJOINT EIGENVALUE PROBLEMS

Theorem (Osborn’s Theory for Non-

Selfadjoint Eigenvalue Problems)

Let T : H — H be a compact linear
operator on a Hilbert space H and con-
sider a sequence of finite-rank operators
T, : H— H such that

n'i[‘goH To— Tlle(H,Hy = 0.

Then the spectrum of the operators T
is convergently approximated by the
spectrum of the operators T,,.

Let u be a nonzero eigenvalue of T with algebraic multiplicity m and let T be a
circle centered at u which lies in p(7) and which encloses no other points of ¢(7). The
spectral projection associated with u and T is defined by

E= E(u)——f R,(T) dz.

2mi
E is a projection onto the space of generalized eigenvectors associated with u and T.
For n sufficiently large, I' C p(7,) and the spectral projection,
E, = E,() = f R(T,)dz,

2mi
exists; E,, converges to E pointwise and {E,} is collectively compact; and dim R(E,, (1))
= dim R(E(u)) = m, where R denotes the range. E, is the spectral projection associated
with T, and the elgenvalues of T, which lie in T, and is a projection onto the direct sum

of the spaces of lized cor ding to these eif 1 Thus,
counting g to algebmc iplicities, there are m eig of T, in T'; we
denote these by ul(n), <., My(n). Furthermore, if I'" is another circle centered at
u with an arbitrarily small radius, we see that u,(n), . . ., u,,(n) are all inside of r
for n sufficiently large, i.e., lim,, .y (n) = p forj =1, ..., m R(E) and R(E,) are
invariant sub for T and T,,, respectively, and TE = ET and T,E, = E,T,. We

will also use the fact that {R,(T,): z €T, n large} is bounded.
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OSBORN THEORY FOR NON-SELFADJOINT EIGENVALUE PROBLEMS

W Osborn, Math. Comp. 29 (1975).

For non-selfadjoint eigenvalue problems, Osborn’s theory also provides the rate of con-
vergence for the arithmetic mean of the discrete eigenvalues.
However, no estimates are available for the individual eigenvalues.
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Uniform Convergence of Tp — T

OSBORN THEORY FOR NON-SELFADJOINT EIGENVALUE PROBLEMS

W Osborn, Math. Comp. 29 (1975).

For non-selfadjoint eigenvalue problems, Osborn’s theory also provides the rate of con-
vergence for the arithmetic mean of the discrete eigenvalues.
However, no estimates are available for the individual eigenvalues.

Open problem: can we provide estimates for the individual eigenvalues of non-selfadjoint
eigenvalue problems?

Oxford
Mathematics



Uniform Convergence of T — T

OSBORN THEORY FOR NON-SELFADJOINT EIGENVALUE PROBLEMS

Osborn, Math. Comp. 29 (1975).

For non-selfadjoint eigenvalue problems, Osborn’s theory also provides the rate of con-
vergence for the arithmetic mean of the discrete eigenvalues.
However, no estimates are available for the individual eigenvalues.

Open problem: can we provide estimates for the individual eigenvalues of non-selfadjoint
eigenvalue problems?

Partial result: In the case that u = V¢ for some smooth function ¢ : Q — R, so that
the dynamo eigenvalue problem has only real eigenvalues, we can provide estimates for
the rate of convergence of individual eigenvalues.
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KIKUCHI FORMULATION

The Kikuchi formulation of the dynamo eigenvalue problem reads is a mixed formulation, so we
cannot immediately write T, =1T1,T.
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KIKUCHI FORMULATION

The Kikuchi formulation of the dynamo eigenvalue problem reads is a mixed formulation, so we
cannot immediately write T, =1T1,T.

Boffi—Brezzi—Gastaldi theory

A mixed eigenvalue problem of this type has convergent approximations if:
» The bilinear form c(-, -) is coercive on the kernel of d(,-), denoted K.

» The weak approximability condition holds, i.e. for any (B,) that solves the
continuous Kikuchi formulation, we have

d(B
SUp M — 0
B,EV) HBhHH(curI,Q) h—0

» The strong approximability condition on the kernel holds, i.e. for any B that
solves the continuous Kikuchi formulation, we have

B:’re]]:(hHB — BhHH(curl,Q) m 0.
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Uniform Convergence of Ty — T

KIKUCHI FORMULATION

. Boffi-Hu—Liang—Z, manuscript in preparation.

Lemma

There exists a constant a > 0 independent of h such that
C(Bh7 Dh) T (u X Bp, V x Dh)LZ(Q) aF ozm(Bh, Dh)

is coercive on the kernel of d(-, ).

J

Using the discrete compactness property of the Nec; element space Ned;, we can
prove the strong approximability condition and weak approximability condition for
the Kikuchi formulation of the shifted dynamo eigenvalue problem.
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