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Overview

▶ Reynolds and pressure robust Hood-Taylor discretisation with
high-order mesh.

▶ Reynolds robust geometric multigrid on curved meshes.

▶ Easy implementation:

All codes are available on Github:
https://github.com/UZerbinati/DD28
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NETGEN

NETGEN is an advancing front 2D/3D-mesh generator, with many
interesting features.

▶ The geometry we intend to mesh
can be described by Constructive
Solid Geometry (CSG), in
particular we can use
Opencascade to describe our
geometry.

▶ It is able to construct
isoparametric meshes, which
conform to the geometry.

Joachim Scöberl



PETSc

PETSc stands for Portable, Extensible Toolkit for Scientific
Computation, is a library for the scalable (parallel) solution of
scientific applications modeled by partial differential equations
(PDEs).

▶ PETSc KSP provides access to
extremly efficent Krylov solvers.

▶ PETSc SNES provides access to
extremly efficent non-linear
solvers, with line-searching and
trust region capabilities.

Stefano Zampini



ngsPETSc – NETGEN/NGSolve

ngsPETSc is an interface between NETGEN/NGSolve and
PETSc. In particular, ngsPETSc provides new capabilities to
NETGEN/NGSolve such as:

▶ Access to all linear solver capabilities of KSP.

▶ Access to all preconditioning capabilities of PC.

▶ Access to all non-linear solver capabilities of SNES.

▶ Access to all mesh refinement capabilities of DMPLEX.
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PETSc DMPlex

PETSc DMPlex handles unstructured
grids using the generic PETSc interface
for hierarchy and multi-physics.

▶ PETSc DMPlex provides a wide
variety of primitive mesh
operations such as: meet, closure,
cone, etc +

▶ PETSc DMPlex provides a wide
variety of mesh refinement
operations such as: uniform
refinement, Alfeld refinement, box
refinement, etc

Matthew G. Knepley



Firedrake is an automated system for the solution of partial
differential equations using the finite element method (FEM).

▶ Variational formulation can be easily defined using the UFL
language.

▶ Wide class of finite elements are available, including H(div),
H(curl), H1 and H2.

▶ Provides access to PETSc linear solvers and non-linear
solvers.



ngsPETSc – Firedrake

ngsPETSc provides new capabilities to Firedrake such as:

▶ Access to all Netgen generated linear meshes and high order
meshes.

▶ Splits for macro elements, such as Alfeld splits and
Powell-Sabin splits (even on curved geometries).

▶ Adaptive mesh refinement capabilities, that conform to the
geometry.

▶ High order mesh hierarchies for multigrid solvers.
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Examples – Opencascade via NETGEN

1 n = 140

2 profile = "2412"

3 xNACA = naca(profile , n, False , False)[0]

4 yNACA = naca(profile , n, False , False)[1]

5 pnts = [Pnt(xNACA[i], yNACA[i], 0) for i in range(len(

xNACA))]

6 spline = SplineApproximation(pnts)

7 airfoil = Face(Wire(spline)).Move ((0.3 ,0.5 ,0)).Rotate(

Axis ((0.3 ,0.5 ,0), Z), -10)

8 circle = Circle(Pnt (0.37 ,0.5) ,0.07).Face()

9 shape = (Rectangle(4, 1).Face()-airfoil -circle)

10 shape.edges.name="wall"

11 shape.edges.Min(X).name="inlet"
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Examples – Opencascade via NETGEN

1 shape.edges.Max(X).name="outlet"

2 geo = OCCGeometry(shape , dim =2)

3 ngmesh = geo.GenerateMesh(maxh =0.1)
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Stokes flow – Weak formulation

Find (u, p) ∈ V × Q such that

ν

∫
Ω
ε(u) : ε(v)−

∫
Ω
p∇ · v =

∫
Ω

f · v ∀v ∈ V

−
∫
Ω
q∇ · u = 0 ∀q ∈ Q

where V and Q are the velocity and pressure spaces respectively,
i.e. V = H1

0 (Ω)
2 and Q = L20(Ω).
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Stokes flow – Inf-sup condition

We can also look for a discrete solution, i.e. find
(uh, ph) ∈ Vh × Qh such that

ν

∫
Ω
ε(u) : ε(v)−

∫
Ω
p∇ · v =

∫
Ω

f · v

−
∫
Ω
q∇ · u = 0

for all (v , q) ∈ Vh × Qh.

inf
q∈Qh

sup
v∈Vh

∫
Ω q∇ · v

∥q∥L2∥v∥H1

≥ β > 0
Franco Brezzi
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Stokes flow – UFL

1 u, p = TrialFunctions(Z)

2 v, q = TestFunctions(Z)

3 nu = Constant (1e-3)

4 a = (nu*inner(eps(u), eps(v)) - p * div(v) - div(u) *

q)*dx

5 L = inner(Constant ((0, 0)), v) * dx
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Stokes flow – Scott–Vogelius element

We can use the Scott–Vogelius pair, which is a mixed finite
element of order k for the velocity and order k − 1 for the pressure.
Such an element is inf-sup stable for k ≥ 2, under certain
assumptions on the mesh. Such pair is divergence-free.

When k = 2 we need Alfeld splits.

1 geo = OCCGeometry(shape , dim =2)

2 ngmesh = geo.GenerateMesh(maxh =0.1)

3 ngmesh.SplitAlfeld ()

1 V = VectorFunctionSpace(mesh , "CG", 2)

2 W = FunctionSpace(mesh , "DG", 1)

3 Z = V * W
Ridgway Scott
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Stokes flow – Scott–Vogelius

1 bcs = [DirichletBC(Z.sub (0), inflowoutflow ,

labelsInlet),

2 DirichletBC(Z.sub(0), zero (2), labelsWall)]

3 nullspace = MixedVectorSpaceBasis(Z, [Z.sub(0),

VectorSpaceBasis(constant=True)])

4 solve(a == L, sol0 , bcs=bcs , solver_parameters=

paramsLU)

DD28 ngsPETSc 15



Stokes flow – Hood–Taylor element

Another element pair we will use is the Hood–Taylor pair, which
has no restrictions on the mesh in two dimensions.

1 V = VectorFunctionSpace(mesh , "CG", 2)

2 W = FunctionSpace(mesh , "CG", 1)

3 Z = V * W

We lose the point-wise divergence-free property!
This is not an issue because the same would happen
for Scott-Vogelius on curved meshes. Daniele Boffi
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Fieldsplit Schur preconditioner

The previous set of equations can be written in matrix form as[
A BT

B 0

] [
u
p

]
=

[
f
0

]
We choose as preconditioner the fieldsplit Schur preconditioner,
i.e.

[
I −Â−1BT

0 I

] [
Â−1 0

0 Ŝ−1

] [
I 0

−BÂ−1 I

]
where S is the Schur complement, i.e. S = −BA−1BT .

1 "fieldsplit_0_ksp_type": "preonly",

2 "fieldsplit_0_pc_type": "mg",

3 "fieldsplit_1_ksp_type": "preonly",

4 "fieldsplit_1_pc_type": "python",
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Fieldsplit Schur preconditioner – Mass matrix

Thanks to the inf-sup condition we can prove that the Schur
complement is spectrally equivalent to the mass matrix, hence we
can use as preconditioner:[
I −Â−1BT

0 I

] [
Â−1 0

0 −νM̂−1

] [
I 0

−BÂ−1 I

]
where M is the mass matrix.

1 class Mass(AuxiliaryOperatorPC):

2 def form(self , pc , test , trial):

3 a=1/nu*inner(test , trial)*dx

4 bcs = None

5 return (a, bcs)
Andrew Wathen

DD28 ngsPETSc 18



Multigrid on curved meshes

ngsPETSc allows us to create a hierarchy of curved meshes for
multigrid solvers.

1 mesh = Mesh(ngmesh)

2 from ngsPETSc import NetgenHierarchy

3 mh = NetgenHierarchy(ngmesh ,2, 2)

We can then use a multigrid solver to compute Â−1:

1 "fieldsplit_0_pc_type": "mg",

2 "fieldsplit_1_ksp_type": "preonly",

3 "fieldsplit_1_pc_type": "python",

4 "fieldsplit_1_pc_python_type": "__main__.Mass",

5 "fieldsplit_1_aux_pc_type": "bjacobi",

6 "fieldsplit_1_aux_sub_pc_type": "icc",
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Navier-Stokes flow

A more interesting example is the Navier-Stokes flow, which is a
non-linear problem. In particular, we will consider the problem of
finding (u, p) ∈ H1(Ω)2 × L2(Ω) such that∫
Ω
∂tu · v +

∫
Ω
(u · ∇)u · v + ν

∫
Ω
∇u : ∇v −

∫
Ω
p∇ · v =

∫
Ω

f · v

−
∫
Ω
q∇ · u = 0

for all (v , q) ∈ H1(Ω)2 × L2(Ω).
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Navier-Stokes flow – Augmented Lagrangian

We consider an augmented Lagrangian formulation for the discrete
problem, i.e. find (uh, ph) ∈ Vh × Qh such that

(∂tu, v)0 + (u · ∇u, v)0 + ν(∇u,∇v)0
− (p,∇ · v)0 + γ(∇ · u,∇ · v)0 = (f , v)0

and verifying the weak divergence free constraint (∇ · u, q)0 = 0,
for all (v , q) ∈ Vh × Qh.
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Navier-Stokes flow – Fieldsplit Schour preconditioner

The linearized version of the Navier-Stokes equations can be
written in matrix form as[

A+ γBTWB BT

B 0

] [
u
p

]
=

[
f
0

]
We choose as preconditioner the fieldsplit Schur preconditioner,
i.e. [

I −Â−1
γ BT

0 I

] [
Â−1
γ 0

0 Ŝ−1
γ

] [
I 0

−BA−1
γ I

]
Aγ = A+ γBTWB Sγ = −BA−1

γ BT .

In this case, we notice that Sγ ∼ −(ν + γ)−1M, but S ̸∼ ν−1M.

DD28 ngsPETSc 22



Navier-Stokes flow – Augmented Lagrangian

▶ The augmented Lagrangian term helps enforce the
divergence-free constraint, and makes the scheme pressure
robust.

▶ We can use as preconditioner[
I −Â−1

γ BT

0 I

] [
Â−1
γ 0
0 −(ν + γ)M−1

] [
I 0

−BA−1
γ I

]
▶ How do we compute Â−1

γ efficiently ? Can we adopt a
multigrid approach ?
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Subspace correction methods for nearly singular problems

To compute Â−1
γ we can use a subspace correction method. We

decompose the space Vh as follows:

Vh =
∑
i=1

Vi .

We consider a coarse space VH and the projection and injection
operators: PH : VH → Vh, I : Vh → Vi .

We then consider as smoother the two–level additive Schwarz
preconditioner defined as:

Â−1
γ = PHA

−1
γ,HP

T
H +

∑
i=1

IiA
−1
γ,i I

T
i .
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Subspace correction methods for nearly singular problems

Robust relaxetion

We need the discrete kernel,

Kh = {v ∈ Vh : Bv = 0},

to decompose in a stable way as follows:

Kh =
∑
i=1

Kh ∩ Vi .
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Robust relaxation via FEEC – Hood–Taylor

0
[
H2(Ω)

]2 [
H1
0 (Ω)

]2
L2(Ω) 0

0
[
P5(Th)

]2 [
P4(Th)

]2
P3
disc(Th) 0

∇× ∇·

∇× ∇·
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Robust prolongation – Hood–Taylor

Robust prolongation

If the space pair (Vh,Qh) is inf-sup stable and the meshes are
nested, we have a robust prolongation operator defined by:

P̃HuH − ũh = uH − ũh,

where

aγ(ũh, ṽh) = γ(∇ · ũh,∇ · ṽh)πQh
πQh

T ∀ṽh ∈ Ṽh,

where πQh
is the L2 projection onto Qh and Ṽh is the space of

discrete velocity vanishing at the boundary of the coarse cells.
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Firedrake’ 24

Join us at the Firedrake user and developer workshop that will be
held between 16-18 September 2024 at the University of Oxford.
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