
ngsPETSc: NETGEN meets PETSc

P. E. Farrell*, S. Zampini†, U. Zerbinati*

* Mathematical Institute
University of Oxford

† Extreme Computing Research Center
King Abdullah University of Science and Technology

28 International Conference on Domain Decomposition Methods, 29th Jannuary
2024, KAUST



Overview

▶ Reynolds and pressure robust Hood-Taylor discretisation with
high-order mesh.

▶ Reynolds robust geometric multigrid on curved meshes.

▶ Easy implementation:

All codes are available on Github:
https://github.com/UZerbinati/DD28

DD28 ngsPETSc 2



NETGEN

NETGEN is an advancing front 2D/3D-mesh generator, with many
interesting features.

▶ The geometry we intend to mesh
can be described by Constructive
Solid Geometry (CSG), in
particular we can use
Opencascade to describe our
geometry.

▶ It is able to construct
isoparametric meshes, which
conform to the geometry.

Joachim Scöberl



PETSc

PETSc stands for Portable, Extensible Toolkit for Scientific
Computation, is a library for the scalable (parallel) solution of
scientific applications modeled by partial differential equations
(PDEs).

▶ PETSc KSP provides access to
extremly efficent Krylov solvers.

▶ PETSc SNES provides access to
extremly efficent non-linear
solvers, with line-searching and
trust region capabilities.

Stefano Zampini



ngsPETSc – NETGEN/NGSolve

ngsPETSc is an interface between NETGEN/NGSolve and
PETSc. In particular, ngsPETSc provides new capabilities to
NETGEN/NGSolve such as:

▶ Access to all linear solver capabilities of KSP.

▶ Access to all preconditioning capabilities of PC.

▶ Access to all non-linear solver capabilities of SNES.

▶ Access to all mesh refinement capabilities of DMPLEX.

DD28 ngsPETSc 5



PETSc DMPlex

PETSc DMPlex handles unstructured
grids using the generic PETSc interface
for hierarchy and multi-physics.

▶ PETSc DMPlex provides a wide
variety of primitive mesh
operations such as: meet, closure,
cone, etc +

▶ PETSc DMPlex provides a wide
variety of mesh refinement
operations such as: uniform
refinement, Alfeld refinement, box
refinement, etc

Matthew G. Knepley



Firedrake is an automated system for the solution of partial
differential equations using the finite element method (FEM).

▶ Variational formulation can be easily defined using the UFL
language.

▶ Wide class of finite elements are available, including H(div),
H(curl), H1 and H2.

▶ Provides access to PETSc linear solvers and non-linear
solvers.



ngsPETSc – Firedrake

ngsPETSc provides new capabilities to Firedrake such as:

▶ Access to all Netgen generated linear meshes and high order
meshes.

▶ Splits for macro elements, such as Alfeld splits and
Powell-Sabin splits (even on curved geometries).

▶ Adaptive mesh refinement capabilities, that conform to the
geometry.

▶ High order mesh hierarchies for multigrid solvers.

DD28 ngsPETSc 8



Examples – Opencascade via NETGEN

1 n = 140

2 profile = "2412"

3 xNACA = naca(profile , n, False , False)[0]

4 yNACA = naca(profile , n, False , False)[1]

5 pnts = [Pnt(xNACA[i], yNACA[i], 0) for i in range(len(

xNACA))]

6 spline = SplineApproximation(pnts)

7 airfoil = Face(Wire(spline)).Move ((0.3 ,0.5 ,0)).Rotate(

Axis ((0.3 ,0.5 ,0), Z), -10)

8 circle = Circle(Pnt (0.37 ,0.5) ,0.07).Face()

9 shape = (Rectangle(4, 1).Face()-airfoil -circle)

10 shape.edges.name="wall"

11 shape.edges.Min(X).name="inlet"

DD28 ngsPETSc 9



Examples – Opencascade via NETGEN

1 shape.edges.Max(X).name="outlet"

2 geo = OCCGeometry(shape , dim =2)

3 ngmesh = geo.GenerateMesh(maxh =0.1)

DD28 ngsPETSc 10



Stokes flow – Weak formulation

Find (u, p) ∈ V × Q such that

ν

∫
Ω
ε(u) : ε(v)−

∫
Ω
p∇ · v =

∫
Ω

f · v ∀v ∈ V

−
∫
Ω
q∇ · u = 0 ∀q ∈ Q

where V and Q are the velocity and pressure spaces respectively,
i.e. V = H1

0 (Ω)
2 and Q = L20(Ω).

DD28 ngsPETSc 11



Stokes flow – Inf-sup condition

We can also look for a discrete solution, i.e. find
(uh, ph) ∈ Vh × Qh such that

ν

∫
Ω
ε(u) : ε(v)−

∫
Ω
p∇ · v =

∫
Ω

f · v

−
∫
Ω
q∇ · u = 0

for all (v , q) ∈ Vh × Qh.

inf
q∈Qh

sup
v∈Vh

∫
Ω q∇ · v

∥q∥L2∥v∥H1

≥ β > 0
Franco Brezzi

DD28 ngsPETSc 12



Stokes flow – UFL

1 u, p = TrialFunctions(Z)

2 v, q = TestFunctions(Z)

3 nu = Constant (1e-3)

4 a = (nu*inner(eps(u), eps(v)) - p * div(v) - div(u) *

q)*dx

5 L = inner(Constant ((0, 0)), v) * dx

DD28 ngsPETSc 13



Stokes flow – Scott–Vogelius element

We can use the Scott–Vogelius pair, which is a mixed finite
element of order k for the velocity and order k − 1 for the pressure.
Such an element is inf-sup stable for k ≥ 2, under certain
assumptions on the mesh. Such pair is divergence-free.

When k = 2 we need Alfeld splits.

1 geo = OCCGeometry(shape , dim =2)

2 ngmesh = geo.GenerateMesh(maxh =0.1)

3 ngmesh.SplitAlfeld ()

1 V = VectorFunctionSpace(mesh , "CG", 2)

2 W = FunctionSpace(mesh , "DG", 1)

3 Z = V * W
Ridgway Scott

DD28 ngsPETSc 14



Stokes flow – Scott–Vogelius

1 bcs = [DirichletBC(Z.sub (0), inflowoutflow ,

labelsInlet),

2 DirichletBC(Z.sub(0), zero (2), labelsWall)]

3 nullspace = MixedVectorSpaceBasis(Z, [Z.sub(0),

VectorSpaceBasis(constant=True)])

4 solve(a == L, sol0 , bcs=bcs , solver_parameters=

paramsLU)

DD28 ngsPETSc 15



Stokes flow – Hood–Taylor element

Another element pair we will use is the Hood–Taylor pair, which
has no restrictions on the mesh in two dimensions.

1 V = VectorFunctionSpace(mesh , "CG", 2)

2 W = FunctionSpace(mesh , "CG", 1)

3 Z = V * W

We lose the point-wise divergence-free property!
This is not an issue because the same would happen
for Scott-Vogelius on curved meshes. Daniele Boffi

DD28 ngsPETSc 16



Fieldsplit Schur preconditioner

The previous set of equations can be written in matrix form as[
A BT

B 0

] [
u
p

]
=

[
f
0

]
We choose as preconditioner the fieldsplit Schur preconditioner,
i.e.

[
I −Â−1BT

0 I

] [
Â−1 0

0 Ŝ−1

] [
I 0

−BÂ−1 I

]
where S is the Schur complement, i.e. S = −BA−1BT .

1 "fieldsplit_0_ksp_type": "preonly",

2 "fieldsplit_0_pc_type": "mg",

3 "fieldsplit_1_ksp_type": "preonly",

4 "fieldsplit_1_pc_type": "python",

DD28 ngsPETSc 17



Fieldsplit Schur preconditioner – Mass matrix

Thanks to the inf-sup condition we can prove that the Schur
complement is spectrally equivalent to the mass matrix, hence we
can use as preconditioner:[
I −Â−1BT

0 I

] [
Â−1 0

0 −νM̂−1

] [
I 0

−BÂ−1 I

]
where M is the mass matrix.

1 class Mass(AuxiliaryOperatorPC):

2 def form(self , pc , test , trial):

3 a=1/nu*inner(test , trial)*dx

4 bcs = None

5 return (a, bcs)
Andrew Wathen

DD28 ngsPETSc 18



Multigrid on curved meshes

ngsPETSc allows us to create a hierarchy of curved meshes for
multigrid solvers.

1 mesh = Mesh(ngmesh)

2 from ngsPETSc import NetgenHierarchy

3 mh = NetgenHierarchy(ngmesh ,2, 2)

We can then use a multigrid solver to compute Â−1:

1 "fieldsplit_0_pc_type": "mg",

2 "fieldsplit_1_ksp_type": "preonly",

3 "fieldsplit_1_pc_type": "python",

4 "fieldsplit_1_pc_python_type": "__main__.Mass",

5 "fieldsplit_1_aux_pc_type": "bjacobi",

6 "fieldsplit_1_aux_sub_pc_type": "icc",

DD28 ngsPETSc 19



Navier-Stokes flow

A more interesting example is the Navier-Stokes flow, which is a
non-linear problem. In particular, we will consider the problem of
finding (u, p) ∈ H1(Ω)2 × L2(Ω) such that∫
Ω
∂tu · v +

∫
Ω
(u · ∇)u · v + ν

∫
Ω
∇u : ∇v −

∫
Ω
p∇ · v =

∫
Ω

f · v

−
∫
Ω
q∇ · u = 0

for all (v , q) ∈ H1(Ω)2 × L2(Ω).

DD28 ngsPETSc 20



Navier-Stokes flow – Augmented Lagrangian

We consider an augmented Lagrangian formulation for the discrete
problem, i.e. find (uh, ph) ∈ Vh × Qh such that

(∂tu, v)0 + (u · ∇u, v)0 + ν(∇u,∇v)0
− (p,∇ · v)0 + γ(∇ · u,∇ · v)0 = (f , v)0

and verifying the weak divergence free constraint (∇ · u, q)0 = 0,
for all (v , q) ∈ Vh × Qh.

DD28 ngsPETSc 21



Navier-Stokes flow – Fieldsplit Schour preconditioner

The linearized version of the Navier-Stokes equations can be
written in matrix form as[

A+ γBTWB BT

B 0

] [
u
p

]
=

[
f
0

]
We choose as preconditioner the fieldsplit Schur preconditioner,
i.e. [

I −Â−1
γ BT

0 I

] [
Â−1
γ 0

0 Ŝ−1
γ

] [
I 0

−BA−1
γ I

]
Aγ = A+ γBTWB Sγ = −BA−1

γ BT .

In this case, we notice that Sγ ∼ −(ν + γ)−1M, but S ̸∼ ν−1M.

DD28 ngsPETSc 22



Navier-Stokes flow – Augmented Lagrangian

▶ The augmented Lagrangian term helps enforce the
divergence-free constraint, and makes the scheme pressure
robust.

▶ We can use as preconditioner[
I −Â−1

γ BT

0 I

] [
Â−1
γ 0
0 −(ν + γ)M−1

] [
I 0

−BA−1
γ I

]
▶ How do we compute Â−1

γ efficiently ? Can we adopt a
multigrid approach ?

DD28 ngsPETSc 23



Subspace correction methods for nearly singular problems

To compute Â−1
γ we can use a subspace correction method. We

decompose the space Vh as follows:

Vh =
∑
i=1

Vi .

We consider a coarse space VH and the projection and injection
operators: PH : VH → Vh, I : Vh → Vi .

We then consider as smoother the two–level additive Schwarz
preconditioner defined as:

Â−1
γ = PHA

−1
γ,HP

T
H +

∑
i=1

IiA
−1
γ,i I

T
i .

DD28 ngsPETSc 24



Subspace correction methods for nearly singular problems

Robust relaxetion

We need the discrete kernel,

Kh = {v ∈ Vh : Bv = 0},

to decompose in a stable way as follows:

Kh =
∑
i=1

Kh ∩ Vi .

DD28 ngsPETSc 25



Robust relaxation via FEEC – Hood–Taylor

0
[
H2(Ω)

]2 [
H1
0 (Ω)

]2
L2(Ω) 0

0
[
P5(Th)

]2 [
P4(Th)

]2
P3
disc(Th) 0

∇× ∇·

∇× ∇·

DD28 ngsPETSc 26



Robust prolongation – Hood–Taylor

Robust prolongation

If the space pair (Vh,Qh) is inf-sup stable and the meshes are
nested, we have a robust prolongation operator defined by:

P̃HuH − ũh = uH − ũh,

where

aγ(ũh, ṽh) = γ(∇ · ũh,∇ · ṽh)πQh
πQh

T ∀ṽh ∈ Ṽh,

where πQh
is the L2 projection onto Qh and Ṽh is the space of

discrete velocity vanishing at the boundary of the coarse cells.

DD28 ngsPETSc 27



Firedrake’ 24

Join us at the Firedrake user and developer workshop that will be
held between 16-18 September 2024 at the University of Oxford.

DD28 ngsPETSc 28


