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THE NORMAL EQUATION

Let us consider the following linear system of equations [ ]
SIMAX Vol. 13, Iss. 3, 1992 (N.
Ax = b, AeR™" x,beR" M. Nachtigal, S. C. Reddy, L. N.
o o Trefethen),
T L. N. Trefethen and D. Bau, IlI,
A 7é A Numerical Linear Algebra, 1997,

SIAM.

In order to solve the system, we can consider the normal
equation, i.e.
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o o Trefethen),
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A 7é A Numerical Linear Algebra, 1997,

SIAM.

In order to solve the system, we can consider the normal
equation, i.e.

B=ATAx=A"b

P How to quickly access AT and B ?
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Let us consider the following linear system of equations [ ]
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T L. N. Trefethen and D. Bau, IlI,
A 7é A Numerical Linear Algebra, 1997,

SIAM.

In order to solve the system, we can consider the normal

equation, i.e. 4 Unfortunately the condition
number of AT A is the square of
the condition number of A.
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THE NORMAL EQUATION

Let us consider the following linear system of equations [ ]
SIMAX Vol. 13, Iss. 3, 1992 (N.
Ax = b, AeR™" x,beR" M. Nachtigal, S. C. Reddy, L. N.
o o Trefethen),
T L. N. Trefethen and D. Bau, IlI,
A 7é A Numerical Linear Algebra, 1997,

SIAM.

In order to solve the system, we can consider the normal

equation, i.e. 4 Unfortunately the condition
number of AT A is the square of
the condition number of A.

B=ATAx=A"b

P We now have a symmetric
positive definite system, that can

P How to quickly access A™ and B ? be solved using CG (CGNE).
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

M SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

Good preconditioners — Common Definition

P is a good preconditioner if P~'A has clustered eigenvalues.
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M SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

Good preconditioners — Common Definition

P is a good preconditioner if P~'A has clustered eigenvalues.

Unfortunately given a good preconditioner P for A we might not have good preconditioner
G=PTPfor ATA
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

Good preconditioners — Common Definition

P is a good preconditioner if P~'A has clustered eigenvalues.

Unfortunately given a good preconditioner P for A we might not have good preconditioner

G:=P'PforATA
bo
A=

bo

Oxford
Mathematics




|
HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

M SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

Good preconditioners — Common Definition

P is a good preconditioner if P~'A has clustered eigenvalues.

Unfortunately given a good preconditioner P for A we might not have good preconditioner
G=PTPfor ATA

1 (bo/bp-1)?
PA= ,  G'B=
1 (bn—1/bo)?
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),
QJRMS Vol. 64, Iss. 114, 2018 (S. Gratton, Et Al.).

Gratton—Giirol-Simon—Toint

If the matrix P is such that ||/ — AP~ ||, < /2 —1— 6, then
ANG™IB) C (V20 + 62,2 — /25 — 62).
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),
QJRMS Vol. 64, Iss. 114, 2018 (S. Gratton, Et Al.).

Gratton—Giirol-Simon—Toint

If the matrix P is such that ||/ — AP~ ||, < /2 —1— 6, then
ANG™B) C (V20 + 62,2 — /25 — 62).

We consider the matrix T := | — AP~L, and expand G !B as
G IB=P P TATA~P TATAP 1=/ - T-TT4+T'T.
Since A(G™1B) C [-||G1B||2, || G~1B||2], we can easily see that
—1=2 Tl = ITIZ <A< 142 Tl + [ TI3.
Substituing ||/ — AP7Y||> < /2 — 1 — § we obtained the desired result.
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CROSS PRECONDITIONING

We would like to give a different intuition of good preconditioners for normal equations. To
this aim we consider the previously observed similarity,

G 'B=P P TATA~ PTTATAP™! = (AP7HT(APTY).

Hence, the closer the matrix AP~ ! is to an orthogonal matrix, the closer G~ !B is to the
identity matrix.
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CROSS PRECONDITIONING

We would like to give a different intuition of good preconditioners for normal equations. To
this aim we consider the previously observed similarity,

G 'B=P P TATA~ PTTATAP™! = (AP7HT(APTY).

Hence, the closer the matrix AP~ ! is to an orthogonal matrix, the closer G~ !B is to the
identity matrix.

Cross preconditioning

We say that the preconditioner P is a good left preconditioner for the normal equations
if it is a good right preconditioner for A, in the sense that ifl has clustered singular
values.
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ADVECTION DIFFUSION ODE - CROSS PRECONDITIONING

We consider the classical advection-diffusion ODE in one [ |
dimension, i.e. R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial
—vii + [3[1 = fin (a7 b) C R, Differential Equations, 2007 ,SIAM.

u(a) =0, U(b) =1, v,p€ Rzo.
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ADVECTION DIFFUSION ODE - CROSS PRECONDITIONING

We consider the classical advection-diffusion ODE in one [ |
dimension, i.e. R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial
—vii + ﬁ[l = fin (a7 b) C R, Differential Equations, 2007 ,SIAM.

u(a) =0, U(b) =1, v,B€ Rzo.

For the moment we will consider neither diffusion nor
advection-dominated regimes, i.e. v =~ 3, and
discretisation over an equi-spaced mesh of step-size h.
Such a discretisation results in the matrix

pbw v B
2h’ R2’  h? 2h

A = tridiag (;7/2
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ADVECTION DIFFUSION ODE - CROSS PRECONDITIONING

We consider the classical advection-diffusion ODE in one [ |
dimension, i.e. R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial
—vii + ﬁ[l = fin (a b) cR Differential Equations, 2007 ,SIAM.
) ?
u(a) =0, U(b) = 1, V,ﬁ € Rzo.

For the moment we will consider neither diffusion nor n | QR RQ QATA2 (AAT)2Q
advection-dominated regimes, i.e. v =~ 3, and 10 | 2 12 2 4
discretisation over an equi-spaced mesh of step-size h. 00 | 2 - 2 6
Such a discretisation results in the matrix A - 2 Y

2 Table: Comparison of the number of iterations for
A = tridia 7& . é l 71 ﬁ different preconditioners for the left preconditioned
= g h2 2h B2’ K2 2h normal equation. The CGNE method was

terminated when the absolute residual was less
than 102 If the method did not converge in
1000 iterations, we marked the number of
iterations with a dash.
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ADVECTION DIFFUSION PDE m
We consider the classical advection-diffusion PDE in two [ ]
dimensions, i.e. H. Elman, D. Silvester, A. Wathen,
Finite Elements and Fast lterative
LU= —vAu+ [5 Yu=FfinQc Rd. Solvers, 2005, Oxford University
& ’ Press

u=gondQ, withv < ||5]|, V-8=0.
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ADVECTION DIFFUSION PDE m
We consider the classical advection-diffusion PDE in two [ ]
dimensions, i.e. H. Elman, D. Silvester, A. Wathen,
Finite Elements and Fast lterative
LU= —vAu+ [5 Yu=FfinQc Rd. Solvers, 2005, Oxford University
= ’ Press

u=gondQ, withv < ||5]|, V-8=0.

Finite Element Discretisation

Fix a discrete space V}, C H3(Q) and look for u € Vi, such that

(ﬁuh, Vh) = V(VU/«,7 vvh)[_z(g) A (5 : Vuh, Vh)L2(Q) = (f7 Vh)Lz(Q) for any vy € Vh.
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THE NORMAL EQUATIONS

We now need to understand what are the normal equations associated with the linear system,

Ax = b, with A,'j = (ﬁg&;./ ‘;Oj)LZ(Q) and bj = (f,@j)g(g).
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We now need to understand what are the normal equations associated with the linear system,

Ax = Q, with A,_, = (ﬁgo,',goj)Lz(Q) and bj = (f,@j)p(g).

The first thing we need to understand is what is A", in fact AT is neither Hilbert adjoint
of A nor the Banach adjoint seen as the operator A: V,, C H3}(Q) — H~}(Q) C Vj.
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THE NORMAL EQUATIONS

We now need to understand what are the normal equations associated with the linear system,

Ax = Q, with A,_, = (ﬁgo,',goj)Lz(Q) and bj = (f,@j)p(g).

The first thing we need to understand is what is A", in fact AT is neither Hilbert adjoint
of A nor the Banach adjoint seen as the operator A: V,, C H3}(Q) — H~}(Q) C Vj.

In fact, AT is an operator itself of the form AT : V}, C H3(Q) — H1(Q) C V/ which
corresponds to the discretisation of the Hilbert adjoint of L, i.e.

AT = Ai = (L), 0i)iz) = (5, L*01)12@) = (L 01, ) 12(0),
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THE NORMAL EQUATIONS - PRIMAL DUAL ERROR

If we consider the classical normal equations, i.e. ATAx=A"b.
Primal Dual Error

We notice that there is a primal dual error in the classical formulation of the normal
equations.

.
Vi C HY(2) A H1c % Vi C H}() AL H e 7
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THE NORMAL EQUATIONS - PRIMAL DUAL ERROR

If we consider the classical normal equations, i.e. ATAx=A"b.

Primal Dual Error

We notice that there is a primal dual error in the classical formulation of the normal
equations.

.
Vs C HI(Q) 2 H1 c v Vs c Hi(Q) A5 Ht e v

To make sense of the normal equations we need to consider a Riesz map T : V| — V.

§
Ve HYQ) D H e v — T s vy c HYQ A Ht e v
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THE NORMAL EQUATIONS

The Riesz map gives rise to a discrete operator T : V] — V}, which is symmetric and positive
definite. Therefore if we consider the normal equations with respect to the Riesz map, i.e.

TTAx=ATTb,

>

we can rewrite them using a Cholesky factorisation of T,i.e. T = C'C.
(CA)T(CA)x = (CA)" Cb,

hence the previous normal equation are associated with the linear system CAx = Cb.
P The normal equations are still symmetric and positive definite. Hence we can solve them
using CGNE. The cross-preconditioning idea is still applicable.
P The condition number of the normal equations is the square of the condition number of
the original system.
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CROSS PRECONDITIONING

We would like to give an intuition on what is the meaning of cross-preconditioning, for the
normal equations just introduced.

(PTTP)IATTA= P IT P TATTA~ TP TATATP ! = T Y(APHTT(APTY).

Hence, we aim to construct PT TP in such a way that the matrix AP~ is close to an
orthogonal matrix, with respect to the inner product induced by T, i.e. QTTQ=T.
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CROSS PRECONDITIONING

We would like to give an intuition on what is the meaning of cross-preconditioning, for the
normal equations just introduced.

(PTTP)IATTA= P IT P TATTA~ TP TATATP ! = T Y(APHTT(APTY).

Hence, we aim to construct PT TP in such a way that the matrix AP~ is close to an
orthogonal matrix, with respect to the inner product induced by T, i.e. QTTQ=T.

Cross preconditioning

We say that the preconditioner P is a good left preconditioner for the normal equations
if it is a good right preconditioner for A, in the sense that AP~" has clustered singular
values, computed with respect to the inner product induced by T.
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THE NORMAL EQUATIONS — H'-RIESZ MAP

We can consider as Riesz map the H!-Riesz
map, i.e.

(VTf,VVh)Lz(Q) = I/il<1r7 Vh>, Yvp € Vp, f € V,g.
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THE NORMAL EQUATIONS — H'-RIESZ MAP

We can consider as Riesz map the H!-Riesz
map, i.e.

(VTf,VVh)Lz(Q) = I/il<f7 Vh>, Yvp € Vp, f € V,:.

Using this Riesz map the normal equations éT TAx = éT T b is approximating the problem:
find u € H}(Q) such that

v(Vu,Vv) ) + v 1My Bu, Ny Bv) 2, forany v e H&(Q).
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THE NORMAL EQUATIONS — H'-RIESZ MAP

We can consider as Riesz map the H!-Riesz v 32 %32 | 64 x64 | 128 x 128
map, i.e. 1-102 5 5 5
0 , 5.1073 3 3 3
(V Tf, VVh)LZ(Q) = <f7 Vh>, Vv € Vi, f € V. 2.5.1073 8 8 8
1.25-1073 3 3 3

Table: The CGNE methods were terminated when the
absolute residual was less than 107°.

Using this Riesz map the normal equations éT TAx = éT T b is approximating the problem:
find u € H}(Q) such that

v(Vu,Vv) ) + v 1My Bu, Ny Bv) 2, forany v e H&(Q).
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THE NORMAL EQUATIONS — PRECONDITION USING THE MASS MATRIX AND AMG

Find u, € V}, such that V71(5Uh,/8Vh)L2(Q), for any vy € V.

v 32 % 32 | 64 x 64 | 128 x 128 | 256 x 256
1-1072 10 15 20 23
51073 11 15 22 30

25-1073 | 17 16 21 32
1.25-107% | 26 24 23 30

Table: Comparison of the number of iterations for the CGNE method preconditioned by the inversion
via PETSc GAMG, for different values of v and different mesh sizes. The wind is fixed to v/28 = (1,1)
and as right-hand side we consider the function f(x,y) = 1. The CGNE method was terminated when
the absolute residual was less than 107°.
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THE NORMAL EQUATIONS — PROJECTED MASS MATRIX AND GMG

Find up € V} such that v~ (My Bup, My Bvh)i2(q), for any vy € Vi,

v | 32x 32 | 64 x 64 | 128 x 128
1-1072 4 5 8
5.10°3 4 5 7

2.5-1073 5 5 7
1.25.1073 7 7 7

Table: Comparison of the number of iterations for the CGNE method preconditioned by geometric
multigird with SOR smoothing, for different values of v and different mesh sizes. The wind is fixed to
V2 = (1,1) and as right-hand side we consider the function f(x,y) = 1. The CGNE method was
terminated when the absolute residual was less than 107°.
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TAKE AWAY MESSAGE

P The normal equations are a powerful tool to solve linear systems arising from PDEs, for
which we have a very good understanding of convergence.
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» The normal equations are a powerful tool to solve linear systems arising from PDEs, for
which we have a very good understanding of convergence.

P The correct notion of a good preconditioner for the normal equations is crucial to
understand how to precondition the normal equations. We propose the notion of cross
preconditioning.
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» The normal equations are a powerful tool to solve linear systems arising from PDEs, for
which we have a very good understanding of convergence.

P The correct notion of a good preconditioner for the normal equations is crucial to
understand how to precondition the normal equations. We propose the notion of cross
preconditioning.

P A careful study of the normal equations can suggest a new PDE to use as preconditioner.
Often these PDEs are simpler to solve than the original ones. We refer to this idea as
normal preconditioning.
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TAKE AWAY MESSAGE

» The normal equations are a powerful tool to solve linear systems arising from PDEs, for
which we have a very good understanding of convergence.

P The correct notion of a good preconditioner for the normal equations is crucial to
understand how to precondition the normal equations. We propose the notion of cross
preconditioning.

P A careful study of the normal equations can suggest a new PDE to use as preconditioner.
Often these PDEs are simpler to solve than the original ones. We refer to this idea as
normal preconditioning.

P We should reconsider the use of normal equations for solving linear systems arising
from PDEs.
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FUTURE WORK m

P There is an intimate connection between the notion of normal preconditioning and a
method known as discontinuous Petrov-Galerkin. We would like to further explore this
connection and understand the optimisation problem associated with the normal equations
here proposed.
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P There is an intimate connection between the notion of normal preconditioning and a
method known as discontinuous Petrov-Galerkin. We would like to further explore this
connection and understand the optimisation problem associated with the normal equations
here proposed.

4 Explore the notion of normal preconditioning for higher-order finite element
discretisation.
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FUTURE WORK

P There is an intimate connection between the notion of normal preconditioning and a

method known as discontinuous Petrov-Galerkin. We would like to further explore this
connection and understand the optimisation problem associated with the normal equations
here proposed.

Explore the notion of normal preconditioning for higher-order finite element
discretisation.

Apply normal preconditioning to other PDEs such as the Helmholtz equation, using as
Riesz map the T-coercive map. We would also like to study the Oseen equation and C*
nearly singular problems such as the Helmholtz—Korteweg equation.
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