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THE NORMAL EQUATION

Let us consider the following linear system of equations

Ax = b, A ∈ Rn×n, x , b ∈ Rn.

AT ̸= A

In order to solve the system, we can consider the normal
equation, i.e.

B := ATAx = ATb

� How to quickly access AT and B ?

]
SIMAX Vol. 13, Iss. 3, 1992 (N.
M. Nachtigal, S. C. Reddy, L. N.
Trefethen),

L. N. Trefethen and D. Bau, III,
Numerical Linear Algebra, 1997,
SIAM.

� Unfortunately the condition
number of ATA is the square of
the condition number of A.

� We now have a symmetric
positive definite system, that can
be solved using CG (CGNE).
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

] SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

Good preconditioners – Common Definition

P is a good preconditioner if P−1A has clustered eigenvalues.

Unfortunately given a good preconditioner P for A we might not have good preconditioner

G := PTP for ATA.
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

]
SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

QJRMS Vol. 64, Iss. 114, 2018 (S. Gratton, Et Al.).

Gratton–Gürol–Simon–Toint

If the matrix P is such that ∥I − AP−1∥2 ≤
√
2− 1− δ, then

Λ(G−1B) ⊂ (
√
2δ + δ2, 2−

√
2δ − δ2).

We consider the matrix T := I − AP−1, and expand G−1B as

G−1B = P−1P−TATA ∼ P−TATAP−1 = I − T − TT + TTT .

Since Λ(G−1B) ⊂ [−∥G−1B∥2, ∥G−1B∥2], we can easily see that

−1− 2∥T∥2 − ∥T∥22 ≤ λ ≤ 1 + 2∥T∥2 + ∥T∥22.
Substituing ∥I − AP−1∥2 ≤

√
2− 1− δ we obtained the desired result.
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CROSS PRECONDITIONING

We would like to give a different intuition of good preconditioners for normal equations. To
this aim we consider the previously observed similarity,

G−1B = P−1P−TATA ∼ P−TATAP−1 = (AP−1)T (AP−1).

Hence, the closer the matrix AP−1 is to an orthogonal matrix, the closer G−1B is to the
identity matrix.

Cross preconditioning

We say that the preconditioner P is a good left preconditioner for the normal equations
if it is a good right preconditioner for A, in the sense that AP−1 has clustered singular
values.
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ADVECTION DIFFUSION ODE – CROSS PRECONDITIONING

We consider the classical advection-diffusion ODE in one
dimension, i.e.

− νü + βu̇ = f in (a, b) ⊂ R,
u(a) = 0, u(b) = 1, ν, β ∈ R≥0.

For the moment we will consider neither diffusion nor
advection-dominated regimes, i.e. ν ≈ β, and
discretisation over an equi-spaced mesh of step-size h.
Such a discretisation results in the matrix

A = tridiag

(
− ν

h2
− β

2h
,
2ν

h2
,− ν

h2
+

β

2h

)

]
R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial
Differential Equations, 2007 ,SIAM.

n QR RQ Q(ATA)1/2 (AAT )1/2Q

10 2 12 2 4
100 2 - 2 6
1000 2 - 2 7

Table: Comparison of the number of iterations for
different preconditioners for the left preconditioned
normal equation. The CGNE method was
terminated when the absolute residual was less
than 10−12. If the method did not converge in
1000 iterations, we marked the number of
iterations with a dash.
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− νü + βu̇ = f in (a, b) ⊂ R,
u(a) = 0, u(b) = 1, ν, β ∈ R≥0.

For the moment we will consider neither diffusion nor
advection-dominated regimes, i.e. ν ≈ β, and
discretisation over an equi-spaced mesh of step-size h.
Such a discretisation results in the matrix

A = tridiag

(
− ν

h2
− β

2h
,
2ν

h2
,− ν

h2
+

β

2h

)

]
R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial
Differential Equations, 2007 ,SIAM.

n QR RQ Q(ATA)1/2 (AAT )1/2Q

10 2 12 2 4
100 2 - 2 6
1000 2 - 2 7

Table: Comparison of the number of iterations for
different preconditioners for the left preconditioned
normal equation. The CGNE method was
terminated when the absolute residual was less
than 10−12. If the method did not converge in
1000 iterations, we marked the number of
iterations with a dash.

L. Lazzarino, Y. Nakatsukasa, U. Zerbinati Normal Preconditioning Milan, 26th Jun. ’25 5 / 15



ADVECTION DIFFUSION PDE

We consider the classical advection-diffusion PDE in two
dimensions, i.e.

Lu := −ν∆u + β · ∇u = f in Ω ⊂ Rd ,

u = g on ∂Ω, with ν ≪ ∥β∥, ∇ · β = 0.

]
H. Elman, D. Silvester, A. Wathen,
Finite Elements and Fast Iterative
Solvers, 2005, Oxford University
Press

Finite Element Discretisation

Fix a discrete space Vh ⊂ H1
0 (Ω) and look for uh ∈ Vh such that

(L̂uh, vh) = ν(∇uh,∇vh)L2(Ω) + (β · ∇uh, vh)L2(Ω) = (f , vh)L2(Ω) for any vh ∈ Vh.
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THE NORMAL EQUATIONS

We now need to understand what are the normal equations associated with the linear system,

Ax = b, with Aij = (L̂φi , φj)L2(Ω) and bj = (f , φj)L2(Ω).

The first thing we need to understand is what is AT , in fact AT is neither Hilbert adjoint
of A nor the Banach adjoint seen as the operator A : Vh ⊂ H1

0 (Ω) → H−1(Ω) ⊂ V ′
h.

In fact, AT is an operator itself of the form AT : Vh ⊂ H1
0 (Ω) → H−1(Ω) ⊂ V ′

h which
corresponds to the discretisation of the Hilbert adjoint of L, i.e.

AT
ij = Aji = (L̂φj , φi )L2(Ω) = (φj , L̂∗φi )L2(Ω) = (L̂∗φi , φj)L2(Ω),
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THE NORMAL EQUATIONS – PRIMAL DUAL ERROR

If we consider the classical normal equations, i.e. ATAx = ATb.

Primal Dual Error

We notice that there is a primal dual error in the classical formulation of the normal
equations.

Vh ⊂ H1
0 (Ω) H−1 ⊂ V ′

h

A
Vh ⊂ H1

0 (Ω) H−1 ⊂ V ′
h

AT

To make sense of the normal equations we need to consider a Riesz map T : V ′
h → Vh.

Vh ⊂ H1
0 (Ω) H−1 ⊂ V ′

h

A
Vh ⊂ H1

0 (Ω) H−1 ⊂ V ′
h

ATT
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THE NORMAL EQUATIONS

The Riesz map gives rise to a discrete operator T : V ′
h → Vh, which is symmetric and positive

definite. Therefore if we consider the normal equations with respect to the Riesz map, i.e.

ATTAx = ATTb,

we can rewrite them using a Cholesky factorisation of T , i.e. T = CTC .

(CA)T (CA)x = (CA)TCb,

hence the previous normal equation are associated with the linear system CAx = Cb.

� The normal equations are still symmetric and positive definite. Hence we can solve them
using CGNE. The cross-preconditioning idea is still applicable.

� The condition number of the normal equations is the square of the condition number of
the original system.
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CROSS PRECONDITIONING

We would like to give an intuition on what is the meaning of cross-preconditioning, for the
normal equations just introduced.

(PTTP)−1ATTA = P−1T−1P−TATTA ∼ T−1P−TATATP−1 = T−1(AP−1)TT (AP−1).

Hence, we aim to construct PTTP in such a way that the matrix AP−1 is close to an
orthogonal matrix, with respect to the inner product induced by T , i.e. QTTQ = T .

Cross preconditioning

We say that the preconditioner P is a good left preconditioner for the normal equations
if it is a good right preconditioner for A, in the sense that AP−1 has clustered singular
values, computed with respect to the inner product induced by T .
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THE NORMAL EQUATIONS – H1-RIESZ MAP

We can consider as Riesz map the H1-Riesz
map, i.e.

(∇Tf ,∇vh)L2(Ω) = ν−1⟨f , vh⟩, ∀vh ∈ Vh, f ∈ V ′
h.

ν 32× 32 64× 64 128× 128

1 · 10−2 2 2 2
5 · 10−3 3 3 3
2.5 · 10−3 3 3 3
1.25 · 10−3 3 3 3

Table: The CGNE methods were terminated when the
absolute residual was less than 10−5.

Using this Riesz map the normal equations ATTAx = ATTb is approximating the problem:
find u ∈ H1

0 (Ω) such that

ν(∇u,∇v)L2(Ω) + ν−1(Π∇βu,Π∇βv)L2(Ω), for any v ∈ H1
0 (Ω).
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THE NORMAL EQUATIONS – PRECONDITION USING THE MASS MATRIX AND AMG

Find uh ∈ Vh such that ν−1(βuh, βvh)L2(Ω), for any vh ∈ Vh.

ν 32× 32 64× 64 128× 128 256× 256

1 · 10−2 10 15 20 23
5 · 10−3 11 15 22 30
2.5 · 10−3 17 16 21 32
1.25 · 10−3 26 24 23 30

Table: Comparison of the number of iterations for the CGNE method preconditioned by the inversion
via PETSc GAMG, for different values of ν and different mesh sizes. The wind is fixed to

√
2β = (1, 1)

and as right-hand side we consider the function f (x , y) ≡ 1. The CGNE method was terminated when
the absolute residual was less than 10−5.
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THE NORMAL EQUATIONS – PROJECTED MASS MATRIX AND GMG

Find uh ∈ Vh such that ν−1(Π∇βuh,Π∇βvh)L2(Ω), for any vh ∈ Vh.

ν 32× 32 64× 64 128× 128

1 · 10−2 4 5 8
5 · 10−3 4 5 7
2.5 · 10−3 5 5 7
1.25 · 10−3 7 7 7

Table: Comparison of the number of iterations for the CGNE method preconditioned by geometric
multigird with SOR smoothing, for different values of ν and different mesh sizes. The wind is fixed to√
2β = (1, 1) and as right-hand side we consider the function f (x , y) ≡ 1. The CGNE method was

terminated when the absolute residual was less than 10−5.
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TAKE AWAY MESSAGE

� The normal equations are a powerful tool to solve linear systems arising from PDEs, for
which we have a very good understanding of convergence.

� The correct notion of a good preconditioner for the normal equations is crucial to
understand how to precondition the normal equations. We propose the notion of cross
preconditioning.

� A careful study of the normal equations can suggest a new PDE to use as preconditioner.
Often these PDEs are simpler to solve than the original ones. We refer to this idea as
normal preconditioning.
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FUTURE WORK

� There is an intimate connection between the notion of normal preconditioning and a
method known as discontinuous Petrov-Galerkin. We would like to further explore this
connection and understand the optimisation problem associated with the normal equations
here proposed.

� Explore the notion of normal preconditioning for higher-order finite element
discretisation.

� Apply normal preconditioning to other PDEs such as the Helmholtz equation, using as
Riesz map the T-coercive map. We would also like to study the Oseen equation and C 1

nearly singular problems such as the Helmholtz–Korteweg equation.
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