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TREFFTZ METHODS

The idea behind DG-Trefftz methods is to consider a discontinuous Galerkin method where the
local approximation spaces are made of functions that are piecewise solutions of the target
PDE. For example, let us consider the Laplace equation,

−∆u = 0 in Ω, u = g on ∂Ω.

A DG-Trefftz method for this problem would consider a mesh Th of Ω and a local discrete
space

Tp(K ) = {v ∈ Pp(K ) : ∆v = 0 in K}, ∀K ∈ Th,

where Pp(K ) is the space of polynomials of degree at most p on the element K . The global
discrete space is then defined as

Th = {vh ∈ L2(Ω) : vh|K ∈ Tp(K ),∀K ∈ Th}.
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No conformity is imposed across element interfaces in the space Th, hence a DG formulation
is needed to enforce the continuity of the solution. We thus consider the following DG
formulation: find uh ∈ Th such that∫
Th

∇uh · ∇vh dx−
∫
Fh

(JuhK · {∇vh}+JvhK · {∇uh}) ds+
∫
Fh

σp2

h
JuhK · JvhK ds=−

∫
∂Ω

g(∂nvh) ds,

−
∫
∂Th

(uh∂nvh + vh∂nuh) ds +

∫
∂Th

σp2

h
uhvh ds,

for all vh ∈ Th, where Fh is the set of all faces in the mesh Th, σ is a positive penalty
parameter, and h is the mesh size
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AN EIGENVALUE PROBLEM

Since we have assembled the stiffness matrix, we can also assemble the mass matrix and
consider the following eigenvalue problem: find (λh, uh) ∈ R× Th such that∫

Th

∇uh · ∇vh dx−
∫
Fh

(JuhK · {∇vh}+JvhK · {∇uh}) ds+
∫
Fh

σp2

h
JuhK · JvhK ds

−
∫
∂Th

(uh∂nvh + vh∂nuh) ds +

∫
∂Th

σp2

h
uhvh ds = λh

∫
Th

uhvh dx ,

for all vh ∈ Th. The mass matrix is the standard DG mass matrix, i.e.
∫
Th

uhvh dx .

▶ The mass matrix M only need to be the DG mass matrix, since conformity is already
imposed in the stiffness matrix.

▶ The stiffness matrix is parameter dependent, i.e. K = K
1
+ σK

2
.
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PARAMETER DEPENDENCE

▶ The parameter σ has to be chosen sufficiently large to ensure positive definiteness of the
stiffness matrix K .

▶ If the parameter σ is too small, we might observe spurious eigenvalues (the appearance of
negative eigenvalues is also a clear sign of failure).

Exact 2 5 5 8 10 10 13 13 17 17

σ = 0.3 (!) 2.00 3.81 5.01 5.01 6.12 8.03 9.41 10.04 10.05 11.28
σ = 1.0 2.00 5.01 5.01 8.03 10.04 10.05 13.08 13.08 17.14 17.14

▶ The parameter dependence is very benign !
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EMBEDDED TREFFTZ METHOD: GLOBAL

▶ The embedded Trefftz method is a variant of the DG-Trefftz method where the basis
functions for T(K ) are not known a priori, but rather computed on-the-fly.

▶ We here consider the “ambient space” Vh made of standard DG polynomials of degree p
on the mesh Th, with basis {ϕj}Ndof

j=1 . There is a canonical isomorphism between RNdof and
Vh, i.e.

G : RNdof → Vh, c 7→
Ndof∑
j=1

cjϕj .

▶ Given an operator L, we construct the matrix,

W
ij
=

∫
Th

⟨Lϕj ,Lϕi ⟩ dx , 1 ≤ i , j ≤ Ndof ,

notice that in Vh the operator L has kernel G(ker(W )). We are interested in an
orthogonal projector onto ker(W ), which can be computed via the SVD of W .
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EMBEDDED TREFFTZ METHOD: ELEMENT-WISE

▶ Notice that since we don’t have global conformity, we can proceed element wise, i.e. we
can define W (K) for each element K ∈ Th.

▶ The local projector T (K) can be computed via the SVD of W (K), i.e.

W (K) =
[
U

1
U

2

] Σ1

0

V T

1

V T

2

 , T (K) = V 2

▶ The element-wise nature of these procedure makes it computationally feasible (and highly
parallelisable).

▶ Assembling the stiffness and mass matrices over the local Trefftz spaces formed by
G(ker(W (K))) is then straightforward and is equivalent to the eigenvalue problem

TTK Tu = λTTM Tu.
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SOME NUMERICAL LINEAR ALGEBRA REMARKS

▶ λ are the Ritz values of the matrix pencil (K ,M) via the projection T .

▶ The Trefftz method approximates the discontinuous Galerkin eigenvalues from above.

Poincaré Separation Theorem

Let µ1 ≤ µ2 ≤ . . . ≤ µNdof
be the eigenvalues of the symmetric positive definiteness

pencil (K ,M) then the eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λNtrf
the Ritz values of the pencil

(K ,M) via projection T satisfy

µi ≤ λi ≤ µNdofs−Ntrf +i , i = 1, . . . ,m.
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SAAD’S STYLE ESTIMATE

Following the same argument first presented by Saad for the convergence of the Lanczos
method, we can derive the following estimate for the convergence of the Ritz values for simple
eigenvalues.

Saad’s style estimate

Let P := T (TTMT )−1TT be the orthogonal projector onto the space spanned the
columns of V0, for every 1 ≤ i ≤ Ndofs , there exists a constant 1 ≤ j ≤ Ntrf such that

|µi − λj | ≤ (µNdofs
− µ1) min

p∈ΠNtrf

max
1≤k ̸=i≤Ndofs

|p(µk)|
∥(I − P)vi∥M

∥Pvi∥M

where ΠNtrf is the set of polynomials of degree at most Ntrf such that p(µi ) = 1, where
v is the eigenvector associated with the eigenvalue µi , i.e. Kvi = µiMvi .
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SAAD’S STYLE ESTIMATE

▶ The quality of the approximation depends the angle φ such that

tan(φ) := ∥(I − P)v∥M/∥Pv∥M ,

i.e. if an eigenvector v is well approximated in the space spanned by the columns of V0,
then φ is small and the approximation is good.

▶ Notice that since M is the discrete L2 inner product, then

∥(I − P)vi∥M/∥Pvi∥M = ∥vi − wi∥L2(Ω)/∥wi∥L2(Ω),

where wi is the embedding in Vh of the best approximation in the Trefftz space of the
eigenfunction associated with µi , with respect to the L2 norm.

▶ By means of Taylor expansion arguments, one can show that as h → 0 also
∥vi − wi∥L2(Ω) → 0 and thus the Ritz values converge to the DG eigenvalues.
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MAXWELL EIGENVALUE PROBLEM

We consider the Maxwell eigenvalue problem: find (ω,u) ∈ R×H0(curl; Ω) ∩H(div0; Ω) such
that

(curl u, curl v) = ω2(u, v), ∀v ∈ H0(curl; Ω) ∩H(div0; Ω),

where in practice we will look for λ = ω2.

▶ Notice that the we are only imposing that the tangential component of u is zero on the
boundary, i.e. u× n = 0 on ∂Ω.

▶ The space H0(curl; Ω) ∩H(div0; Ω) is hard to discretise, we are not aware of any
conforming finite element space for this space.

▶ The eigenvalue problem has to be treated with care due to the large kernel of the curl
operator, i.e. ker(curl) = ∇H1

0 (Ω). We have no zero eigenvalues, due the divergence free
constraint.
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KIKUCHI FORMULATION OF MAXWELL EIGENVALUE PROBLEM

Instead of working directly with the Maxwell eigenvalue problem, we resort to a mixed
formulation first proposed by Kikuchi: find (λ,u, p) ∈ R×H0(curl; Ω)× H1

0 (Ω) such that

(curl u, curl v) + (v,∇p) = λ(u, v), ∀v ∈ H0(curl; Ω),

(u,∇q) = 0, ∀q ∈ H1
0 (Ω).

▶ The Lagrange multiplier p enforces the divergence free constraint on u.

▶ A conforming discretisation of this problem can be obtained by considering Nédélec
elements for u and standard Lagrangian elements for p.

▶ Less restrictive conditions have to be imposed on the spaces to ensure absence of spurious
modes, with respect to other formulations. In particular, weak and strong approximability
conditions ensure the absence of spurious modes (the easyest way to ensure these is via
the inf-sup condition).
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▶ A conforming discretisation of this problem can be obtained by considering Nédélec
elements for u and standard Lagrangian elements for p.

▶ Less restrictive conditions have to be imposed on the spaces to ensure absence of spurious
modes, with respect to other formulations. In particular, weak and strong approximability
conditions ensure the absence of spurious modes (the easyest way to ensure these is via
the inf-sup condition).
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A DISCONTINUOUS GALERKIN KIKUCHI FORMULATION

Mimicking the Kikuchi formulation, we consider the following DG formulation: find
(λh,uh, ph) ∈ Vh ×Wh such that

ah(uh, vh) + bh(vh, ph) = λhmh(uh, vh), ∀vh ∈ Vh,

bh(uh, qh) + ch(ph, qh) = 0, ∀qh ∈ Wh,

ah(uh, vh) =

∫
Th

curl uh · curl vh dx −
∫
Fh

(Juh × nK · {curl vh}+ Jvh × nK · {curl uh}) ds

+

∫
Fh

σp2

h
Juh × nK · Jvh × nK ds −

∫
∂Th

(uh × n) · (curl vh) ds

−
∫
∂Th

(vh × n) · (curl uh) ds +
∫
∂Th

σp2

h
(uh × n) · (vh × n) ds,

bh(uh, qh) = −
∫
Th

div uhqh dx +

∫
Fh

Juh · nK{qh} ds
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A DISCONTINUOUS GALERKIN KIKUCHI FORMULATION

ch(ph, qh) =

∫
∂Th

σp2

h2
phqh ds, mh(uh, vh) =

∫
Th

uh · vh dx .

▶ We are enforcing the Dirichlet boundary condition on the pressure via an Aubin–Babuska
type penalty term.

▶ Our formulation is slightly different from the one proposed by
Houston–Perugia–Schötzau where instead the bilinear form bh(·, ·) had the form

bh(uh, qh) = −
∫
Th

uh · ∇qh dx +

∫
Fh

{uh · n}JqhK ds +
∫
Fh

σp2

h
JphKJqhK ds.

In fact, we have integrated by parts the term (u,∇q) and dropped the interior penalty
term.
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WEAK NORMAL CONTINUITY: NUMERICAL EVIDENCE

▶ It is well known that if one uses Lagrangian elements for uh we observe the appearance of
spurious modes.

▶ We here show that by weakly imposing the tangential continuity of uh across element
interfaces, doesn’t lead to spurious modes.

Exact 1 1 2 4 4 5 5 8 9 9

CG 1.00 1.00 2.00 4.01 4.01 5.02 5.02

5.98

8.06 9.08 9.08
DG 1.00 1.00 2.02 4.05 4.05 5.10 5.11 8.21 9.28 9.30
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EMBEDDED TREFFTZ DISCRETISATION OF KIKUCHI FORMULATION

▶ We consider the following local operator

⟨Lu, v⟩ =
∫
K

curl curl u ·v dx , ∀v ∈ Pp−2(K ).

▶ We then co nstruct the local Trefftz space via the
embedded Trefftz procedure, i.e. we compute the
matrix W (K) and the space Tp(K ) = G(ker(W (K))).

▶ equivalently, we solve for the eigenvalue problem

TTK Tu = λTTM Tu,

where K and M are the stiffness and mass matrices
of the DG Kikuchi formulation.

0 2 4 6 8 10 12 14

103

104

order

N
·

DG vs Trefftz

DG
TRF

At p = 14 we have Ndofs = 32400 for
DG and Ntrf = 23040 for Trefftz.
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CONSTRAINED TREFFTZ DISCRETISATION OF KIKUCHI FORMULATION

▶ The curl curl operator has a large kernel, thus the local Trefftz space Tp(K ) will contain
many basis functions, yielding a reduction in the number of degrees of freedom far from
optimal.

▶ To compensate for this result we impose partial conformity across element interfaces
strongly, and thus consider the following Constrained Trefftz space

Tp
c (K ) = {ϕ ∈ Vh : ⟨Lϕj , ξ⟩ = 0 ∀ξ ∈ Qh and ∃φ ∈ Zh : cK (ϕ, ψ) = dK (φ,ψ)∀ψ ∈ Zh},

where Qh and Zh are respectively local spaces used to impose the Trefftz constraint and
the conformity constraint, while cK (·, ·) and dK (·, ·) are the local bilinear forms used to
impose the conformity constraint.
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CONSTRAINED TREFFTZ DISCRETISATION OF KIKUCHI FORMULATION

▶ To construct the Constrained Trefftz space, on each element we consider the following
local linear system

W
K

C
K

 ·

 | | | | | |
. . .uC . . . . . .uT . . .
| | | | | |

 =

(
0 0

D
K

0

)

.

▶ The matrix W
K
is the same as in the embedded Trefftz method, and we can construct a

set of basis functions that satisfy the Trefftz constraint by computing the SVD of W
K
.

▶ Our new projector matrix has now form,

T (K) =
[
U

C
U

T

]
,

where UC are the basis functions that satisfy the Trefftz constraint and the trace
constraint, while UT are the basis functions that only satisfy the Trefftz constraint and
have vanishing trace constraint. Notice that the all linear system can be solve via SVD.
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CONSTRAINED TREFFTZ DISCRETISATION OF KIKUCHI FORMULATION

▶ We begin considering the following constraint
operator for ϕ, φ ∈ Vh(K ),Zh(∂K ) := Pk(∂K ),

cK (ϕ, ψ) =

∫
∂K

(ϕ×n) · (ψ×n) ds, ∀ψ ∈ Zh(K ).

dK (ϕ, ψ) =

∫
∂K

(φ×n) · (ψ×n) ds, ∀ψ ∈ Zh(K ).

▶ The space Zh(K ) is used to impose the partial
tangential continuity of uh across element
interfaces, since we know the original Kikuchi
formulation requires u ∈ H0(curl; Ω). Notice that
k = p − 1 for all p ≤ 7 while k = p − 2 for p > 7.

0 2 4 6 8 10 12 14

103

104

order

N
·

DG vs Trefftz

DG
TRF
CTRF

At p = 14 we have Ndofs = 32400 for
DG and Ntrf = 23040 for Trefftz.
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At p = 5 we have Ndofs = 23436 for
DG, Ntrf = 18228 for Trefftz and
Nctrf = 15568 for Constrained Trefftz.
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PARTIAL NORMAL–TANGENTIAL CONTINUITY: NUMERICAL EVIDENCE

▶ If we try to impose partial normal continuity of uh across element interfaces together with
the tangential continuity, we observe the appearance of spurious modes.

Exact 1 1 2 4 4 5 5 8

CTRFt 1.00 1.00 2.02 4.05 4.05 5.10 5.11 8.21
CTRFtn(!) 0.8 1.01 1.01 1.02 2.22 3.31 4.25 4.25 5.45 5.47 9.51

▶ The appearance of the spurious modes is an example of the fact that Saad’s style estimate
doesn’t guarantee convergence of the Ritz values without spurious modes.
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AN MHD EIGENVALUE PROBLEM

Following the work by Arnold we are interested in the following eigenvalue problem:

−(β × u,∇× û) + R−1
m (∇× u,∇× û) = λ(u, û)

▶ This eigenvalue problem arises in the context of stability analysis of the MHD dynamo
problem, that lead to the formation of stars.

▶ Saad’s style estimate doesn’t hold for not symmetric problems, we thus need uniform
convergence estimates to ensure convergence of Trefftz method.

▶ The spectrum of this problem actually give us very little information, we need to deal with
the notion of pseudo-spectra and prove the convergence of the pseudo-spectra.

Generalisation of Osborn theory for the Pseudo-Spectra

We proved that under uniform converge of the solution operator, the discrete pseudo-
spectra converge to the continuous one:
https://www.uzerbinati.eu/teaching/spectral_theory/
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