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A self-adjoint eigenvalue problem
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We here consider a prototypical self-adjoint eigenvalue problem:

—Au=ocu inQ,
u=20 on 0%,
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We here consider a prototypical self-adjoint eigenvalue problem:

—Au=ocu inQ,
u=20 on 012,

This eigenvalue probelm models the resonance a membrane and
not of a shell.

We will also discuss a similar eigenvalue problem for the
resonance of an elastic beam.
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The Virtual Element Method (VEM)
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The virtual element method (VEM) is a generalization of the
finite element method (FEM) that allows for the use of general
polygonal and polyhedral meshes.
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The virtual element method (VEM) is a generalization of the
finite element method (FEM) that allows for the use of general
polygonal and polyhedral meshes.

VE(K) = {vae HY(K) : Avj, € Py_»(K) and vj € Bk(9K)},

B (0K) = {vi € C°(OK) : Ve € 0K, vyle € Py(e)}.
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The Virtual Element Method (VEM)
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The virtual element method (VEM) is a generalization of the
finite element method (FEM) that allows for the use of general
polygonal and polyhedral meshes.

VE(K) = {vae HY(K) : Avj, € Py_»(K) and vj € Bk(9K)},

B (0K) = {vi € C°(OK) : Ve € 0K, vyle € Py(e)}.

Do we really need to solve the Poisson problem to solve the
Poisson problem ?
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The projectors
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To avoid the “recursive” solution of the Poisson problem, we
introduce the following projectors:

My VE(K) = Pi(K)
/ V pi - V(Vh — I'IkV7th) dK =0 Vv, e fo((K) Vpi € ]Pk(K),
K

/ (vh—I'IZ’th)ds:O.
oK
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The discretisation
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Using the projectors, we can discretise the original eigenvalue
problem as:

> uv)=0 ) bu,v),  Yve[Vi(Th)

KeTh KeTh
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problem as:

> vy =0 bu,v), Vv V(T

KeTh KeTh

Where the bilinear forms a(-,-) and bX(-,-) are defined as:

afl (un, vi) = (VI up, VI " vi)oo

+a SR =Y Ky up, (1= 1KY v)
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Using the projectors, we can discretise the original eigenvalue
problem as:

> uv)=0 ) bu,v),  Yve V(T

KeTh KeTh

Where the bilinear forms a(-,-) and bX(-,-) are defined as:

b (un, vir) = (Mg un, Nf vi)oo

+ B8 =N )un, (1 = M) vi)

Oxford
Mathematics GIMC SIMAI 2024 Lightning VEM 5



The degress of freedom
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Notice that to construct the projectors associated with the VEM
space, we only need a few degrees of freedom more than the one
needed to construct the FEM space.

Degrees of freedom on a pentagon, for k = 1,2 3.
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The stabilisation
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Where the stabilisation term S¥(-,-) needs to resepct the following
properties:

Co|val3 £ < S(vh,vh) < C*|val3 g, for all vj, € Ker(ny ),
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The jinx of stabilisation comes out swinging:

» How to choose the correct stabilisation term, given the lack of
physical intuition behind it 7
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Where the stabilisation term S¥(-,-) needs to resepct the following
properties:

Co|val3 £ < S(vh,vh) < C*|val3 g, for all vj, € Ker(ny ),

The jinx of stabilisation comes out swinging:
» How to choose the correct stabilisation term, given the lack of
physical intuition behind it 7
» The stabilisation term might note be robust with respect to
the polynomial degree k.

» The stabilisation term has a polluting effect on the spectrum.
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The polluting effect of the stabilisation
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Let us focus on the last form of the jinx of stabilisation.

We computed the eigenvalues
of for different v and fixed sta-
bilization 8 = 5. The horizon-
tal line represents the “good”
eigenvalues, while the oblique
line represents the “spurious”
eigenvalues. The red circle
S reppresents the exact eigenval-
ues.
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Stanilisation free VEM
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To resolve this issue we decided to use a stabilisation free VEM. A
brief overview of the stabilisation-free VEM includes:
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To resolve this issue we decided to use a stabilisation free VEM. A
brief overview of the stabilisation-free VEM includes:

» In Berrone et all. (2022), the authors propose an Enlarged
Enhancement Virtual Element Method (E?-VEM) based on
the use of higher order polynomial projectors.

» In Berrone et all. (2024), the idea is extended by projecting
on a space of higher order divergence-free polynomials.

» In Berrrone et all. (2023), the authors propose to approximate
the VEM basis functions by the use of a neural network. This
approach brings the VEM method back into the realm of
classical finite elements.
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The lightning VEM
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We here propose a different approach to the stabilisation free
VEM, which we call the lightning VEM.
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The lightning VEM
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We here propose a different approach to the stabilisation free
VEM, which we call the lightning VEM.

We aim to explicitly construct basis functions for the VEM
space.

» This will allow treating the VEM as a classical finite element
method, hence removing the need for any stabilisation.

» We will have point-wise access to the value of the basis
functions, and therefore also of the solution.
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The basis functions
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We consider as basis functions a
lightning approximation of the ex-

act solution of the Poisson prob- . E 08
.. . . i

lem, inside each element, i.e. ol - -

02

Np Nz ' . .M,

o; = Re E i B E bz b, 02

. Z — ZJ . 0.5 0.4

Jj=0 Jj=0 \ 06

here {z;}"" les clustered o
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exponentially close to the vertices
of the polygon.
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» For any element that is not treated “reference element”-style
we need to solve a small-ish rectangular least-square problem
to construct the basis functions.
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For any element that is not treated ‘“reference element”-style
we need to solve a small-ish rectangular least-square problem
to construct the basis functions.

Only go polytopal if you really need it. For example along
fracture interface or along the deformed boundary of an ALE
scheme. If not use triangles, triangles are cool !

The lightning VEM s a slightly non-conforming finite
element scheme, hence we are committing a variational crime.
We need to be careful with the quadrature use we decided to
use, so far high-order Gauss-Lobatto quadrature did the
trick.
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Table: Eigenvalues of the vibrating membrane problem, computed using
the lightning VEM, for different number of elements N.

Computed (rate)

N =16 N = 64 N = 256 N = 1024

Exact

2 2.1041 (-) 2.0272(2.3)  2.0069 (1.9) 2.0016 (2.2)
5 57076 (-)  5.1704 (2.5) 5.0420 (2.0) 5.0104 (2.1)
5 5.7827 (-)  5.1766 (2.6)  5.0441 (1.9) 5.0107 (2.2)
8 9.6766 (-)  8.4257 (2.4)  8.1095 (1.9)  8.0274 (2.1)
10 13.0473 (-) 10.6908 (2.6) 10.1675 (2.0) 10.0418 (2.1)
10 13.1213 (-) 10.7088 (2.6) 10.1774 (1.9) 10.0430 (2.2)
13 17.2137 (-) 14.1258 (2.3) 13.2883 (1.9) 13.0709 (2.2)
13 17.4080 (-) 14.1523 (2.4) 13.2904 (1.9) 13.0743 (2.1)
17 25.0125 (-) 19.0137 (2.5) 17.4854 (2.0) 17.1218 (2.1)
17 32,9151 (-) 19.0700 (3.6) 17.5246 (1.9) 17.1242 (2.2)

Oxford
Mathematics GIMC SIMAI 2024 Lightning VEM 13



The vibrating beam
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We also consider the eigenvalue problem associated with a
vibrating elastic beam, i.e.

V. <2u€(u) + Adiv(u)/) =ou,

where € is the symmetric gradient, here used as a classical measure
of strain.
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The vibrating beam
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We also consider the eigenvalue problem associated with a
vibrating elastic beam, i.e.

V. <2u€(u) + Adiv(u)/) =ou,

where € is the symmetric gradient, here used as a classical measure
of strain.

As X tends to infinity the elastic beam becomes more and more
incompressible, while y is a parameter mainly describing the
deviatoric response of the beam.
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Results for the virabting beam
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Table: Eigenvalues for fixed Young's modulus E = 70 and Poisson’s ratio
v = 0.2. The reference eigenvalues are computed using a high-order
FEM.

Computed (rate)

N =16 N = 64 N = 256 N = 1024

Reference

1007.87 1079.25 (-) 1026.15 (2.4) 1012.43 (1.9) 1009.00 (2.1)
1007.87 1081.55 (-) 1026.34 (2.5) 1012.54 (1.9) 1009.02 (2.2)
1492.37 1833.06 (-) 1576.01 (2.5) 1513.10 (2.0) 1497.41 (2.2)
216599  2504.26 (-) 2263.84 (22) 2191.22 (1.9) 2172.37 (2.1)
2755.46 3405.34 (-) 2907.61 (2.6) 2794.34 (1.9) 2765.06 (2.2)
2882.72 4032.00 (-) 3172.83 (2.4) 2954.98 (1.9) 2900.39 (2.2)
2882.72 4086.72 (-) 3177.66 (2.5) 2956.80 (1.9) 2900.69 (2.2)
3529.69 4146.86 (-) 3664.37 (2.7) 3563.53 (1.9) 3538.40 (2.1)
4082.41 5146.52 (-) 4430.68 (1.9) 4175.24 (1.8) 4105.75 (2.1)
4082.41 5368.48 (-) 4439.26 (2.3) 4176.30 (1.9) 4106.08 (2.1)
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Locking
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It is a well-known issue of low-order discretisation of linear
elasticity, that for A — oo, the discretisation converge to the wrong
answer. This phenomenon is known as locking.

i

v
10 =

The figure on the left comes is taken from Ainsworth and Parker
(2022).
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Thank you for you attention !
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