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Computing, Kácov, 18th June 2025



LIQUID CRYSTALS

] L. S. Hirst, G. Charras, Liquid
crystals in living tissue, Nature,
2017.

Liquid crystal are ubiquitous in nature
and have a wide range of applications.

� Liquid crystals displays (LCD),
are among the most common
applications of liquid crystals.

� Liquid crystal configurations
can be found in biological
systems, such as epithelial cells.
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ACOUSTIC IN LIQUID CRYSTALS

� Sound propagation in liquid crystal exhibit
anisotropic phenomena.

� Historically the interaction of acoustic waves with
the nematic director field was first explained by
means of the minimal entropy production principle.

� We here assume the aligning torque acting on the
nematic director field is of elastic nature, rather
than of a dissipative viscous one. This idea was
already proposed, and validated experimentally, by
Mullen, Lüthi, and Stephen.

] M. E. Mullen, B. Lüthi, M. J.
Stephen Sound velocity in a
Nematic Liquid Crystal, Physical
Review Letters, 1972.

Figure: Angular dependence of sound
velocity. T = 21 C, v = 10 MHz, and
H = 5 kOe. θ is the angle between the
field direction and propagation direction.
Solid line is 12.5 · 10−4 cos(θ)2.
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THE NEMATIC HELMHOLTZ–KORTEWEG EQUATION

] Farrell, P.E. and ∼, 2025. Time-harmonic waves in Korteweg and nematic-Korteweg fluids. Physical
Review E, 111(3), p.035413.

A reasonable assumption is that the nematic director field n is regarded as undistorted at the
acoustic length scale, so that we can assume ∇n = 0.

Under this hypothesis the nematic Helmholtz–Korteweg equation can be derived, i.e.

−ω2S(x)− c20∆S(x) + ρ20α∆
2S(x) + ρ20u2∇ · ∇

[
n · HSn

]
= 0.

� It can be proven that this PDE is compatible with a hyperelastic formulation, i.e. it can be
derived from the free energy functional

W (ρ,∇ρ,n) = c20ρ
2 +

1

2
α∥∇ρ∥2 + 1

2
β(∇ρ · n)2.
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THE NEMATIC HELMHOLTZ–KORTEWEG EQUATION

] Farrell, P.E. and ∼, 2025. Time-harmonic waves in Korteweg and nematic-Korteweg fluids. Physical
Review E, 111(3), p.035413.

A reasonable assumption is that the nematic director field n is regarded as undistorted at the
acoustic length scale, so that we can assume ∇n = 0.

Under this hypothesis the nematic Helmholtz–Korteweg equation can be derived, i.e.

−ω2S(x)− c20∆S(x) + ρ20α∆
2S(x) + ρ20u2∇ · ∇

[
n · HSn

]
= 0.

� It can be proven that this PDE is compatible with a hyperelastic formulation, i.e. it can be
derived from the free energy functional

W (ρ,∇ρ,n) = c20ρ
2 +

1

2
α∥∇ρ∥2 + 1

2
β(∇ρ · n)2.

P. E. Farrell, T. van Beeck, U. Zerbinati Helmholtz–Korteweg EMS Kácov, 18th Jun. ’25 3 / 9
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BOUNDARY CONDITIONS

“PDEs are made by God, the boundary conditions by the Devil!”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.
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“PDEs are made by God, the boundary conditions by the Devil!”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.

Sound-soft boundary conditions

Sound-soft boundary conditions impose that the excess-pressure defined as

c20ρ0S(x)− ρ30α∆S(x)− u2ρ
3
0

(
n · HSn

)
= 0.

vanishes along the boundary. Sound-soft boundary conditions thus correspond to impos-
ing homogeneous Dirichlet boundary conditions on S(x) and

∆S(x) = −u2
α

(
n · HSn

)
.
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BOUNDARY CONDITIONS

“PDEs are made by God, the boundary conditions by the Devil!”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.

Sound-hard boundary conditions

Sound-hard boundary conditions also change since the normal derivative of the fluid
velocity ∂νv now satisfies the equation

iωρ0(n · ν) = c20∂νS(x)− ρ20α∂ν∆S(x)− ρ20u2∂ν
(
n · HSn

)
.

Sound-hard boundary conditions thus correspond to imposing homogeneous Neumann
boundary conditions on S(x) and

∂ν ∆S(x) = −u2
α
∂ν

(
n · HSn

)
.
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BOUNDARY CONDITIONS

“PDEs are made by God, the boundary conditions by the Devil!”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.

Impedance boundary conditions

Some computation shows that the impedance boundary conditions for the nematic
Helmholtz–Korteweg equation are equivalent to imposing Robin boundary conditions
on S(x) and

∂ν ∆S(x) = iζ∆S(x) + iζ
u2
α

(
n · HSn

)
− u2

α
∂ν

(
n · HSn

)
,

where ζ is the impedance of the boundary.
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WEAK FORMULATION

] Farrell, P.E., van Beeck, T. and ∼., 2025. Analysis and numerical analysis of the Helmholtz–Korteweg
equation. arXiv preprint arXiv:2503.10771.

We want to find u ∈ X such that

a(u, v) = (f , v)L2(Ω) ∀v ∈ X ,

where

a(u, v) := α(∆u,∆v)L2(Ω) + β(nT (Hu)n,∆v)L2(Ω) + (∇u,∇v)L2(Ω)︸ ︷︷ ︸
=:e(u,v)

−k2(u, v)L2(Ω)

We only consider sound-soft boundary conditions for which X = H2
0 (Ω) := H2(Ω) ∩ H1

0 (Ω) for
simplicity and impose the boundary conditions using Nitsch’s method at the discrete level.
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C 1-DISCRETIZATION OF THE HELMHOLTZ–KORTEWEG EQUATION
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Figure: The convergence of the H2-norm of the error for the Helmholtz–Korteweg equation for
different values of k (top row) and the corresponding manufactured solution (bottom row).
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ANISOTROPIC SPEED OF SOUND

We demonstrate the anisotropic speed of sound considering as right-hand side a symmetric
Gaussian pulse in (0, 0), impedance BCs, k = 40, α = 10−2

β = 0 β = 5 · 10−3 β = 5 · 10−3 β = 5 · 10−3
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TOTAL INTERNAL REFLECTION

Figure: An acoustic reflection phenomenon in a nematic Korteweg fluid can be caused by a
discontinuity in the nematic director field. We consider a Gaussian beam travelling upwards in a
semicircular domain, with two different nematic director fields.
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SCATTERING BY A CIRCULAR OBSTACLE
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Figure: The scattered wave produced by a circular obstacle in a nematic Korteweg fluid with α = 10−3

and u2 = 5 · 10−4, has a greater amplitude when the incoming plane wave is orthogonal to the nematic
director field. ξ is the angle between the propagating direction of the plane wave d and n. An
adiabatic layer has been used to implement the Sommerfeld radiation condition on the outer bounday.
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THANK YOU!

Discretisation of the Helmholtz–Korteweg equation

https://doi.org/10.1103/PhysRevE.111.035413
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