
Derivation, Analysis and Numerical Analysis of
the Helmholtz–Korteweg equation

Umberto Zerbinati*

*Mathematical Institute – University of Oxford

SIAM Student Chapter, KAUST, 8th April 2025



LIQUID CRYSTALS
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crystals in living tissue, Nature,
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Liquid crystal are ubiquitous in nature
and have a wide range of applications.

� Liquid crystals displays (LCD),
are among the most common
applications of liquid crystals.

� Liquid crystal configurations
can be found in biological
systems, such as epitelial cells.
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ACOUSTIC IN LIQUID CRYSTALS

� Acoustic waves propagating in liquid crystals have
been studied for a long time. Particular attention
has been given to the anisotropic phenomena that
they exhibit.

� Historically the interaction of acoustic waves with
the nematic director field was first explained by
means of the minimal entropy production principle,
i.e. the acoustic anisotropy is assumed to be the
result of calamitic molecules reorienting in order to
minimize the propagation losses.

� We here assume the aligning torque acting on the
nematic director field is of elastic nature, rather
than of a dissipative viscous one. This idea was
already proposed, and validated experimentally, by
Mullen, Lüthi, and Stephen.

] M. E. Mullen, B. Lüthi, M. J.
Stephen Sound velocity in a
Nematic Liquid Crystal, Physics
Review Letters, 1972.

Figure: Angular dependence of sound
velocity. T = 21 C, v = 10 MHz, and
H = 5 kOe. θ is the angle between the
field direction and propagation direction.
Solid line is 12.5 · 10−4 cos(θ)2.
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THE HELMHOLTZ–KORTEWEG EQUATION

1



The Helmholtz–Korteweg equation

TIME-HARMONIC CONDENSATION WAVES

Let us consider the continuity equation and the balance law of linear momentum in the absence
of external body forces, i.e.

∂tρ+∇ · (ρv) = 0, ρ
[
∂tv + (∇v)v

]
= −(∇ · σ) , (1)

where v(x , t) is the fluid velocity and σ is the Cauchy stress tensor.

We are interested in disturbances in the density field of the form ρ(x , t) = ρ0 (1 + s(x , t)),
where s(x , t) is a time-harmonic condensation, i.e.

s(x , t) = ℜ
[
S(x)e−iωt

]
, (2)

with ω being the frequency of the disturbances. Furthermore, we will assume that the
condensation is a small perturbation of the density field, i.e. |s(x , t)| = O(ε), with ε ≪ 1.
Lastly, we will assume that the velocity field is a small perturbation around the stationary
regime, i.e. ∥v(x , t)∥ = O(ε).
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The Helmholtz–Korteweg equation

A GENERALIZED HELMHOLTZ EQUATION

Under these assumptions, we can rewrite (1) as

ρ0
[
∂ts +∇ · v +O(ε2)

]
= 0, ∂tv +O(ε2) = −ρ−1(∇ · σ) .

Neglecting terms of order O(ε2), since |s(x , t)| ≪ 1 we have ρ−1 ≈ ρ−1
0 , thus

ρ0 [∂ts +∇ · v ] = 0, ∂tv = −ρ−1
0 (∇ · σ) .

Taking the time derivative of the continuity equation and substituting for ∂tv yields

ρ0∂
2
t s −∇ ·

(
∇ · σ

)
= 0. (1)

Substituting the time-harmonic ansatz (2) in the general wave equation (1) yields

ℜ
[
−ρ0ω

2S(x)e−iωt
]
= −ℜ

[
∇ ·

(
∇ · σ

)]
.
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The Helmholtz–Korteweg equation

STRESS TENSOR: SPHERICAL RESPONSE

The Cauchy stress tensor σ encodes the elastic response of the liquid crystal to any
defromation.

Spherical response

The isotropic response of a compressible fluid is usually modeled as a spherical stress
tensor, i.e. the stress tensor is given by

σ(I ) = −pId

where p is the fluid pressure, which we assume is of the form p = ρc20 , with c0 being the
speed of sound in the isotropic phase and ρ the density of the liquid crystal.
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The Helmholtz–Korteweg equation

STRESS TENSOR: TRANSVERSALLY ISOTROPIC RESPONSE

] P. Biscari, A. DiCarlo, S. S. Turzi Anisotropic wave propagation in nematic liquid crystals, Soft Matter,
2014.

Transversally isotropic response

Originally Ericksen modeled the elastic response of the liquid crystal as a transversally
isotropic material, i.e. the stress tensor is given by

σ(T ) = −pId + µ (n ⊗ n)

where n is the nematic director field and µ is a fixed constant.

� It can be proven that solution of the generalised wave equation (1) with a transversally
isotropic stress tensor present an anisotropic wave speed, compatible with the
experimental results.

� The transversally isotropic stress tensor, is incompatible with an hyperelastic formulation.

U. Zerbinati Helmholtz–Korteweg Jedda, 8th Apr. ’25 6 / 35



The Helmholtz–Korteweg equation

STRESS TENSOR: TRANSVERSALLY ISOTROPIC RESPONSE

] P. Biscari, A. DiCarlo, S. S. Turzi Anisotropic wave propagation in nematic liquid crystals, Soft Matter,
2014.

Transversally isotropic response

Originally Ericksen modeled the elastic response of the liquid crystal as a transversally
isotropic material, i.e. the stress tensor is given by

σ(T ) = −pId + µ (n ⊗ n)

where n is the nematic director field and µ is a fixed constant.

� It can be proven that solution of the generalised wave equation (1) with a transversally
isotropic stress tensor present an anisotropic wave speed, compatible with the
experimental results.

� The transversally isotropic stress tensor, is incompatible with an hyperelastic formulation.

U. Zerbinati Helmholtz–Korteweg Jedda, 8th Apr. ’25 6 / 35



The Helmholtz–Korteweg equation

STRESS TENSOR: TRANSVERSALLY ISOTROPIC RESPONSE

] P. Biscari, A. DiCarlo, S. S. Turzi Anisotropic wave propagation in nematic liquid crystals, Soft Matter,
2014.

Transversally isotropic response

Originally Ericksen modeled the elastic response of the liquid crystal as a transversally
isotropic material, i.e. the stress tensor is given by

σ(T ) = −pId + µ (n ⊗ n)

where n is the nematic director field and µ is a fixed constant.

� It can be proven that solution of the generalised wave equation (1) with a transversally
isotropic stress tensor present an anisotropic wave speed, compatible with the
experimental results.

� The transversally isotropic stress tensor, is incompatible with an hyperelastic formulation.

U. Zerbinati Helmholtz–Korteweg Jedda, 8th Apr. ’25 6 / 35



The Helmholtz–Korteweg equation

STRESS TENSOR: NEMATIC–KORTEWEG RESPONSE

] E. Virga Variational theory for nematoacoustics, Physics Review E (2009).

Nematic–Korteweg response

Virga proposed a different model for the elastic response of the liquid crystal, which is
compatible with an hyperelastic formulation. The stress tensor is given by

σ(V ) = pI − αρ (∇ρ⊗∇ρ)− β (∇ρ · n)∇ρ⊗ n,

where the coefficients α and β are positive constants and the pressure is given by

p = ρc20 − ρ∇ · [ρ (α∇ρ+ β(∇ρ · n)n)] .

� It can be proven that this stress tensor is compatible with an hyperelastic formulation, i.e.
it can be derived from the free energy functional

W (ρ,∇ρ,n) = c20ρ+
1

2
α∥∇ρ∥2 + 1

2
β(∇ρ · n)2.
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The Helmholtz–Korteweg equation

THE NEMATIC HELMHOLTZ–KORTEWEG EQUATION

Consider the nematic Korteweg stress tensor and the time-harmonic ansatz we can rewrite the
right-hand side of the generalised wave equation (1) as

∇ · σ ≈ ℜ
[
− ρ0c

2
0∇S(x) + αρ30∇(∆S(x)) + ρ30u2∇ ((∇S · n)n)

]
.

Dividing by ρ0e
−ωt the generalised wave equation (1) yields

−ω2S(x)− c20∆S(x) + ρ20α∆
2S(x) + ρ20u2∇ · ∇

[
HSn · n +∇n∇S · n + (∇S · n)(∇ · n)

]
= 0.

A reasonable assumption is that the nematic director field n is regarded as undistorted at the
acoustic length scale, so that we can assume ∇n = 0.

Under this hypothesis we obtain the nematic Helmholtz–Korteweg equation, i.e.

−ω2S(x)− c20∆S(x) + ρ20α∆
2S(x) + ρ20u2∇ · ∇

[
n · HSn

]
= 0.

U. Zerbinati Helmholtz–Korteweg Jedda, 8th Apr. ’25 8 / 35



The Helmholtz–Korteweg equation

THE NEMATIC HELMHOLTZ–KORTEWEG EQUATION

Consider the nematic Korteweg stress tensor and the time-harmonic ansatz we can rewrite the
right-hand side of the generalised wave equation (1) as

∇ · σ ≈ ℜ
[
− ρ0c

2
0∇S(x) + αρ30∇(∆S(x)) + ρ30u2∇ ((∇S · n)n)

]
.

Dividing by ρ0e
−ωt the generalised wave equation (1) yields

−ω2S(x)− c20∆S(x) + ρ20α∆
2S(x) + ρ20u2∇ · ∇

[
HSn · n +∇n∇S · n + (∇S · n)(∇ · n)

]
= 0.

A reasonable assumption is that the nematic director field n is regarded as undistorted at the
acoustic length scale, so that we can assume ∇n = 0.

Under this hypothesis we obtain the nematic Helmholtz–Korteweg equation, i.e.

−ω2S(x)− c20∆S(x) + ρ20α∆
2S(x) + ρ20u2∇ · ∇

[
n · HSn

]
= 0.

U. Zerbinati Helmholtz–Korteweg Jedda, 8th Apr. ’25 8 / 35



The Helmholtz–Korteweg equation

THE NEMATIC HELMHOLTZ–KORTEWEG EQUATION

Consider the nematic Korteweg stress tensor and the time-harmonic ansatz we can rewrite the
right-hand side of the generalised wave equation (1) as

∇ · σ ≈ ℜ
[
− ρ0c

2
0∇S(x) + αρ30∇(∆S(x)) + ρ30u2∇ ((∇S · n)n)

]
.

Dividing by ρ0e
−ωt the generalised wave equation (1) yields

−ω2S(x)− c20∆S(x) + ρ20α∆
2S(x) + ρ20u2∇ · ∇

[
HSn · n +∇n∇S · n + (∇S · n)(∇ · n)

]
= 0.

A reasonable assumption is that the nematic director field n is regarded as undistorted at the
acoustic length scale, so that we can assume ∇n = 0.

Under this hypothesis we obtain the nematic Helmholtz–Korteweg equation, i.e.

−ω2S(x)− c20∆S(x) + ρ20α∆
2S(x) + ρ20u2∇ · ∇

[
n · HSn

]
= 0.

U. Zerbinati Helmholtz–Korteweg Jedda, 8th Apr. ’25 8 / 35



The Helmholtz–Korteweg equation

BOUNDARY CONDITIONS

“PDE’s are made by God, the boundary conditions by the Devil !”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.
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BOUNDARY CONDITIONS

“PDE’s are made by God, the boundary conditions by the Devil !”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.

Sound-soft boundary conditions

Sound-soft boundary conditions impose that the excess-pressure defined as

c20ρ0S(x)− ρ30α∆S(x)− u2ρ
3
0

(
n · HSn

)
= 0.

vanish along the boundary. Sound-soft boundary conditions thus correspond to imposing
homogeneous Dirichlet boundary conditions on S(x) and

∆S(x) = −u2
α

(
n · HSn

)
.
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“PDE’s are made by God, the boundary conditions by the Devil !”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.

Sound-hard boundary conditions

Sound-hard boundary conditions also change since the normal derivative of the fluid
velocity ∂νv now satisfies the equation

iωρ0(n · ν) = c20∂νS(x)− ρ20α∂ν∆S(x)− ρ20u2∂ν
(
n · HSn

)
.
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The Helmholtz–Korteweg equation

BOUNDARY CONDITIONS

“PDE’s are made by God, the boundary conditions by the Devil !”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.

Impedance boundary conditions

Some computation shows that the impedance boundary conditions for the nematic
Helmholtz–Korteweg equation are equivalent to imposing Robin boundary conditions
on S(x) and

∂ν ∆S(x) = iζ∆S(x) + iζ
u2
α

(
n · HSn

)
− u2

α
∂ν

(
n · HSn

)
,

where ζ is the impedance of the boundary.
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FEATURES
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Features

DISPERSION RELATION

We consider plane wave solutions, given by S(x) = s0e
ik(x·d ), where s0 = O(ε), d is the unit

vector that prescribes the direction in which the wave propagates, k is the wave-number and
the wave-vector k is given by k := kd .

Substituting the plane-wave ansatz in the nematic Helmholtz–Korteweg equation yields the
following dispersion relation

−ω2 + c20k
2 + ρ20αk

4 + ρ20u2k
4 (d · n)2 = 0,
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Features

CHARACTERISTIC TIME SCALE

Collecting the fourth order terms and defining ξ as the angle between d and n we find

−ω2 + c20k
2 +

[
ρ20α+ ρ20u2 cos

2(ξ)
]
k4 = 0.

If we introduce the nematic Korteweg characteristic time scale τ2, defined as

τ2 := 4
ρ0
√
α+ u2 cos2(ξ)

c20
.

We can rewrite the previous equation as −1 + κ2 + 1
4τ

2
2ω

2κ4 = 0, which has roots

κ = ± 1

τ2ω

[
−2± 2

√
1 + τ 22ω

2

] 1
2

.
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2κ4 = 0, which has roots

κ = ± 1

τ2ω

[
−2± 2

√
1 + τ 22ω

2

] 1
2

.
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Features

ANISOTROPIC SPEED OF SOUND

By analogy to the Helmholtz equation we assume that the wave-number k can be decomposed
as k = k(R) + ik(I ), k(R) =

ω

c
, κ(I ) :=

c0
ω
k(I ).

where k(R), k(I ) ∈ R and where c > 0 is the effective speed of sound, i.e. the actual (and
possibly anisotropic) speed of sound with which the wave propagates, as opposed to the
isotropic speed of sound c0.

Considering first the imaginary part, we find two non-trivial solutions for κ
(I )
0 , i.e.

κ(I ) = ±

√
2

τ 22ω
2
−

(c0
c

)2

.

Focusing on the vanishing imaginary part we can rewrite the dispersion relation as,

−1 +
(c0
c

)2

+
1

4
τ 22ω

2
(c0
c

)4

= 0.

Solving for c0/c we find only one real positive root, c0
c = ωτ2

[
2
(√

1 + ω2τ 22 − 1
)]− 1

2

.
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Features

ANISOTROPIC PENETRATION DEPTH

We next consider the other case where k is purely imaginary, i.e. k = ik(I ). We will assume

k(I ) = −ω

c

√
α, α ≥ 0. (1)

Substituting this ansatz in the dispersion relation we find

− 1−
(c0
c

)2

α+
1

4
τ 22ω

2
(c0
c

)4

α2 = 0.

Solving for α we find two solutions, i.e.

α = 4

(
c

c0

)2
[
−1±

√
1 + ω2τ 22

ω2τ 22

]
, (2)

Substituting (2) in (1) and discarding the imaginary part of
√
α to get

δ =
c0
2ω

[
−1 +

√
1 + τ 22ω

2

τ 22ω
2

]− 1
2

, δ ≈ c0
2ω

√
τ2ω, ωτ2 >> 1
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Features

TOTAL INTERNAL REFLECTION

We now turn our attention to the total internal reflection case,
described by imaginary wave-numbers. The transmitted wave will
have wave number kT = nT

n k , where nT is the refractive index of
the lower half-plane and n is the refractive index of the upper
half-plane. Using Snell’s law we can compute the direction dT of
the transmitted wave, i.e.

dT
1 = sin(θ)

n

nT
, dT

2 =

√
1− sin2(θ)

n2

n2T
,

where θ is the angle of incidence of S+. When the angle of
incidence is greater than the critical angle, i.e. θ > θc , with
θc = sin−1

(
nT
n

)
, the transmitted wave will undergo total internal

reflection.

n

n > nT

θ θR

θT

U. Zerbinati Helmholtz–Korteweg Jedda, 8th Apr. ’25 14 / 35



Features

SCATTERING BY A CIRCULAR OBSTACLE: A SINGULARLY PERTURBED PROBLEM

We next consider the scattering of a plane wave by a circular sound soft obstacle, immersed in
a nematic Korteweg fluid. We assume u2 ≪ α, ρ20α ≈ ℓ2, ρ20u2 ≈ γ−1ℓ2, with γ ≫ 1 ≫ ℓ.

Scattering problem

− ω2S+(x)− c20∆S+(x) + ℓ2∆2S+(x)

+ γ−1ℓ2∇·∇
[
n · HS+n

]
=0 |x | > 1,

S+(x) = S−(x) |x | = 1,

∆(S+ − S−) + γ−1n · H(S+ − S−)n = 0 |x | = 1,

|∂|x|S+(x)− ikS+(x)| = O(|x |− 1
2 ) |x | → ∞,

where S+ is the scattered wave and S− is the incoming plane wave.

U. Zerbinati Helmholtz–Korteweg Jedda, 8th Apr. ’25 15 / 35



Features

SCATTERING BY A CIRCULAR OBSTACLE: A SINGULARLY PERTURBED PROBLEM

We next consider the scattering of a plane wave by a circular sound soft obstacle, immersed in
a nematic Korteweg fluid. We assume u2 ≪ α, ρ20α ≈ ℓ2, ρ20u2 ≈ γ−1ℓ2, with γ ≫ 1 ≫ ℓ.

Scattering problem

− ω2S+(x)− c20∆S+(x) + ℓ2∆2S+(x)

+ γ−1ℓ2∇·∇
[
n · HS+n

]
=0 |x | > 1,

S+(x) = S−(x) |x | = 1,

∆(S+ − S−) + γ−1n · H(S+ − S−)n = 0 |x | = 1,

|∂|x|S+(x)− ikS+(x)| = O(|x |− 1
2 ) |x | → ∞,

where S+ is the scattered wave and S− is the incoming plane wave.

U. Zerbinati Helmholtz–Korteweg Jedda, 8th Apr. ’25 15 / 35



Features

SCATTERING BY A CIRCULAR OBSTACLE: BOUNDARY LAYERS

To study the boundary layer we introduce the change of variables ξ = ℓ x , and rewrite the first
equation of the scattering problem as

−ω2S+(ξ)− c20
ℓ2

∆S+(ξ) +
1

ℓ2
∆2S+(ξ) +

γ−1

ℓ2
∇·∇

[
HS+n · n

]
=0.

As ℓ → 0 we can consider only the dominant terms, to derive a partial differential equation for
the boundary layer Sℓ, i.e.

− c20∆S+
ℓ (ξ) + ∆2S+

ℓ (ξ) + γ−1∇·∇
[
n · HS+

ℓ n
]
= 0.

Some solutions of this equation are given by solutions of

− c0S
+
ℓ (ξ) + ∆S+

ℓ (ξ) + γ−1n · HS+
ℓ n = 0,

and using the assumption that ∇n ≡ 0 we obtain −c0S
+
ℓ (ξ) +∇ ·

[
(I + γ−1n ⊗ n)∇S+

ℓ

]
= 0.

From this we see that the boundary layer S+
ℓ is governed by a reaction-diffusion equation with

a transversally isotropic diffusion tensor (I + γ−1n ⊗ n).
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Features

SCATTERING BY A CIRCULAR OBSTACLE: VISHIK–LYUSTERNIK METHOD

Using the Vishik–Lyusternik method, we assume S+(x) = S+
0 (x) + S+

ℓ (ξ), where S+
0 (x) is the

solution of the Helmholtz equation for |x | > 1.
We know the value of the boundary layer S+

ℓ on the perimeter of the circular obstacle we can
rewrite the S+ as being an O(ℓ2) perturbation of the solution of the following Helmholtz
scattering problem

− ω2S+(x)− c20∆S+(x) = 0, |x | > 1,

S+(x) = S−(x) +O(ℓ2), |x | = 1,

|∂|x|S+(x)− ikS+(x)| = O(|x |− 1
2 ), |x | → ∞.

The solution of the previous equation can be expressed as a Mie series and using the
Jacobi-Anger formula we obtain the following asymptotic expansion

S+(r , θ) = −
√

2

πkr

∑
j∈Z

aj
e i(kr−j π2 )−

π
4 +jθ

H
(1)
j (kR)

, r → ∞.
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ANALYSIS

3



Analysis

INDEFINITENESS OF HELMHOLTZ-LIKE PROBLEMS

Let X be a separable Hilbert space. For given k ≫ 0, f ∈ L2(Ω), find u ∈ X s.t.

a(u, v) := e(u, v)− k2(u, v)L2(Ω) = (f , v)L2(Ω) ∀v ∈ X , (P)

where e(·, ·) is the bilinear form associated to the eigenvalue problem: find u ∈ X , λ ∈ C such
that

e(u, v) = λ(u, v)L2(Ω).

We will assume this eigenvalue problem is well-posed and the associated solution operator is
compact and self-adjoint.

� the eigenfunctions {e(i)}i∈N form an orthonormal basis of X

� suppose ∃i∗ s.t. λ(i∗) < k2 < λ(i∗+1), then (P) is indefinite:

a(e(i∗), e(i∗)) = λ(i∗) − k2 < 0 < λ(i∗+1) − k2 = a(e(i∗+1), e(i∗+1))
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Analysis

WELL-POSEDNESS

] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from
Lagrangian multipliers., R.A.I.R.O., 1974.

Let X be a Hilbert space, a : X ×X → C be a bounded sesquilinear form and A ∈ L(X ,X ′) be
the associated operator: ⟨Au, v⟩X ′,X = a(u, v) ∀u, v ∈ X . We search for u ∈ X such that
Au = f in X ′ is well-posed

� A is a bounded isomorphism
� A is injective, ran(A) is closed and A∗ injective
� ∃α > 0 s.t. ∥Au∥X ′ ≥ α∥u∥X for all u ∈ X and A∗ injective

� infu∈X supv∈X
|⟨Au,v⟩X ′,X |
∥u∥X∥v∥X

≥ α > 0 and A∗ injective

Lax-Milgram

A is coercive, i.e. ∃α > 0 s.t. ℜ{⟨Au, u⟩X ′,X} ≥ ∥u∥2X ⇒ A is a bounded isomorphism
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� A is injective, ran(A) is closed and A∗ injective
� ∃α > 0 s.t. ∥Au∥X ′ ≥ α∥u∥X for all u ∈ X and A∗ injective

� infu∈X supv∈X
|⟨Au,v⟩X ′,X |
∥u∥X∥v∥X

≥ α > 0 and A∗ injective

Lax-Milgram

A is coercive, i.e. ∃α > 0 s.t. ℜ{⟨Au, u⟩X ′,X} ≥ ∥u∥2X ⇒ A is a bounded isomorphism
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Analysis
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Analysis

T-COERCIVITY

] P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA,
2012.

A bijective ⇔ ∃ T bijective s.t. AT is coercive

T-coercivity

We call A ∈ L(X ,X ′) T-coercive if there exists a bijective operator T ∈ L(X ) s.t.
AT ∈ L(X ,X ′) is coercive, i.e. ℜ{⟨ATu, u⟩X ′,X} ≥ α∥u∥2X .

� T-coercivity equivalent to well-posedness (necessary & sufficient)

� recover coercivity with T = Id

� not directly inherited to the discrete level
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Analysis

CONSTRUCTION OF T – EXAMPLE

For given k >> 0, f ∈ L2(Ω), find u ∈ X s.t.

a(u, v) := e(u, v)− k2(u, v)L2(Ω) = (f , v)L2(Ω) ∀v ∈ X , (P)

� {λ(i), e(i)}i∈N eigenpairs associated with e(·, ·), i∗ ∈ N s.t. λ(i∗) < k2 < λ(i∗+1)

� construct T ∈ L(X ) bijective, s.t.

Te(i) =

{
−e(i) if i ≤ i∗;

+e(i) if i > i∗.

� can show coercivity of a(T ·, ·) since

a(Te(i), e(i)) =

{
k2 − λ(i) if i ≤ i∗

λ(i) − k2 if i > i∗
> 0.
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Analysis

THE DISCRETE LEVEL

T-coercivity not inherited to the discrete level.

Uniform Th-coercivity

Let {Xh}h ⊂ X be a seq. of discrete spaces. We call A uniformly Th-coercive on {Xh}h
if there exists a family of bijective operators {Th}h, Th ∈ L(Xh) and α∗ independent of
h s.t.

ℜ{(AThuh, uh)Xh
} ≥ α∗∥uh∥2X ,

Let A ∈ L(X ) be injective and A = B +K , where B ∈ L(X ) is bijective and K ∈ L(X )
compact. If B is uniformly Th-coercive on {Xh}h ⊂ X , then there exists h0 > 0 s.t.
A is uniformly Th-coercive on {Xh}h for h ≤ h0.
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Analysis

WEAK FORMULATION

We want to find u ∈ X such that

a(u, v) = (f , v)L2(Ω) ∀v ∈ X ,

where

a(u, v) := α(∆u,∆v)L2(Ω) + β(nT (Hu)n,∆v)L2(Ω) + (∇u,∇v)L2(Ω)︸ ︷︷ ︸
=:e(u,v)

−k2(u, v)L2(Ω)

We will only consider sound-soft boundary conditions for which X = H2
0 (Ω) := H2(Ω) ∩ H1

0 (Ω)
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Analysis

CONTINUOUS ANALYSIS: THE EIGENVALUE PROBLEM

Find u ∈ H2
0 (Ω), λ ∈ C s.t. e(u, v) = λ(u, v)L2(Ω) for all v ∈ H2

0 (Ω),

e(u, v) := α(∆u,∆v)L2(Ω) + β(nT (Hu)n,∆v)L2(Ω) + (∇u,∇v)L2(Ω).

If β is sufficiently small, the EVP is well-posed and the solution operator is compact and
self-adjoint.

� self-adjointness of β(nT (Hu)n,∆v)L2(Ω) can be proved integrating by parts.

� coercivity of e(·, ·) on H2
0 (Ω) can be proven using Poincaré inequality.

� compactness follows from the compact embedding H2
0 (Ω) ↪→ L2(Ω).
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Analysis

CONTINUOUS ANALYSIS: T-COERCIVITY

� ∃ eigenpairs (λ(i), e(i))i∈N of e(·, ·) s.t. (e(i))i∈N forms an orthonormal basis of X

� set i∗ := min{i ∈ N : λ(i) < k2} and define

W := span0≤i≤i∗{e
(i)}, T := IdX −2PW

� T bijective & acts on eigenfcts. as Te(i) =

{
−e(i) if λ(i) < k2;

+e(i) if λ(i) > k2.

� We have that

e(Tu, u)− k2(Tu, u)L2

=
∑
i≤i∗

Cλ(k
2 − λ(i))(u(i))2 +

∑
i>i∗

Cλ(λ
(i) − k2)(u(i))2 ≥ γ∥u∥2X
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NUMERICAL ANALYSIS

4



Numerical Analysis

DISCRETIZATION

] R.C. Kirby, L. Mitchell, Code generation for generally mapped finite elements. ACM TOMS, 2019.

Let {Th}h be a family of shape regular, quasi-uniform, simplicial triangulations. We choose an
H2-conforming finite element space, p > 4:

Xh := {v ∈ H2(Ω) : v |T ∈ Pp(T ) ∀T ∈ Th}

� imposing essential boundary conditions for C1-conforming FEM challenging.

� use Nitsche’s method to impose BCs for sound soft boundary conditions.
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Numerical Analysis

DISCRETE PROBLEM

Find uh ∈ Xh s.t. ah(uh, vh) = (f , vh)L2(Ω) for all vh ∈ Xh, where

ah(uh, vh) := a(uh, vh) +Nh(uh, vh)

� The discrete analysis follows similar steps as the continuous case:

� analyse the discrete EVP (with potential Nitsche terms);
� construct Th and show uniform Th-coercivity;
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Numerical Analysis

NITSCHE TERMS

Nh(uh, vh) :=α(∇(∆uh) · ν, vh)L2(∂Ω) − (∇uh · ν, vh)L2(∂Ω)

+β(∇(nT (Huh)n) · ν, vh)L2(∂Ω)

+α(uh,∇(∆vh) · ν)L2(∂Ω) − (uh,∇vh · ν)L2(∂Ω)

+β(uh,∇(nT (Hvh)n) · ν)L2(∂Ω)

+α
η1
h3

(uh, vh)L2(∂Ω) +
η2
h
(uh, vh)L2(∂Ω)

+β
η3
h3

(uh, vh)L2(∂Ω)
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Numerical Analysis

DISCRETE EIGENVALUE PROBLEM

Find uh ∈ Xh, λ ∈ C, such that for all vh ∈ Xh

eh(uh, vh) := e(uh, vh) +Nh(uh, vh) = λ(uh, vh)L2(Ω)

Lemma

For ηi , i = 1, 2, 3, large enough, the bilinear form eh(·, ·) is uniformly coercive on X̃h with
respect to ∥ · ∥2.

|Nh(uh, uh)| ≳− αζ1
h3

∥∆uh∥2L2(Ω) −
ζ2
h
∥∇uh∥2L2(Ω) −

βζ3
h3

|u|2H2(Ω)

+

(
αη1
h3

− α

ζ1
+

η2
h

− 1

ζ2
+

βη3
h3

− β

ζ3

)
∥u∥2L2(∂Ω)

Pick ζi small enough, ηi large enough, i = 1, 2, 3.
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Numerical Analysis

DISCRETE Th-COERCIVITY

� We define Th ∈ L(Xh) s.t Te
(i)
h =

{
−e

(i)
h if i ≤ i∗;

+e
(i)
h if i > i∗.

� As in the continuous case, we have that

eh(Thuh, uh)− k2(Thuh, uh) =
∑

0≤i≤i∗

Cλh
(k2 − λ

(i)
h )(u

(i)
h )2 +

∑
i>i∗

Cλh
(λ

(i)
h − k2)(u

(i)
h )2 ≥ γ∥uh∥22,

provided that we pick h is small enough s.t. λ
(i∗)
h < k2.

There ∃h0 s.t. ∀h ≤ h0) ah(·, ·) is uniformly Th-coercive, thus the discrete problem
has a unique solution for h small enough.
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Numerical Analysis
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Numerical Analysis

BEST APPROXIMATION

� ah(·, ·) is continuous with respect to the stronger ∥ · ∥h-norm:

∥uh∥2h := ∥uh∥22 +
(
h3∥∇(∆uh)∥2L2(∂Ω) + h3∥∇(nTHuhn)∥2L2(Ω) + h∥∇uh∥L2(∂Ω)

)

� ah is consistent, i.e. ah(u − uh, vh) = 0 for all vh ∈ Xh

� With classical arguments, we can show that

∥u − uh∥h ≤ C inf
vh∈Xh

∥u − vh∥h.
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Numerical Analysis

BEST APPROXIMATION
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Figure: The convergence of the H2-norm of the error for the Helmholtz–Korteweg equation for
different values of k (top row) and the corresponding manufactured solution (bottom row).
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Numerical Analysis

ANISOTROPIC SPEED OF SOUND

We demonstrate the anisotropic speed of sound considering as right-hand side asymmetric
Gaussian pulse in (0, 0), impedance BCs, k = 40, α = 10−2

β = 0 β = 5 · 10−3 β = 5 · 10−3 β = 5 · 10−3
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Numerical Analysis

TOTAL INTERNAL REFLECTION

Figure: An acoustic reflection phenomenon in a nematic Korteweg fluid can be caused by a
discontinuity in the nematic director field. We consider a Gaussian beam travelling upwards in a
semicircular domain, with two different nematic director fields.
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Numerical Analysis

SCATTERING BY A CIRCULAR OBSTACLE

0 1 2 3

−0.5

0

0.5

1 ξ = 0

ξ = π
2

Figure: The scattered wave produced by a circular obstacle in a nematic Korteweg fluid with α = 10−3

and u2 = 5 · 10−4, has a greater amplitude when the incoming plane wave is orthogonal to the nematic
director field. Recall that ξ is the angle between d and n. We simulated a plane wave propagating
parallel to the y -axis and impinging on a circular obstacle, centered at the origin (left). The amplitude
of the scattered wave, for different values of ξ, is measured along the y -axis (right). An adiabatic layer
has been used to implement the Sommerfeld radiation condition on the outer bounday.
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THANK YOU!

Derivation, Analysis and Numerical Analysis of the Helmholtz–Korteweg equation

Umberto Zerbinati*
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