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Liquid crystal are ubiquitous in nature
and have a wide range of applications.

� Liquid crystals displays (LCD),
are among the most common
applications of liquid crystals.

� Liquid crystal configurations
can be found in biological
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ACOUSTIC IN LIQUID CRYSTALS

� Acoustic waves propagating in liquid crystals have
been studied for a long time. Particular attention
has been given to the anisotropic phenomena that
they exhibit.

� Historically the interaction of acoustic waves with
the nematic director field was first explained by
means of the minimal entropy production principle,
i.e. the acoustic anisotropy is assumed to be the
result of calamitic molecules reorienting in order to
minimize the propagation losses.

� We here assume the aligning torque acting on the
nematic director field is of elastic nature, rather
than of a dissipative viscous one. This idea was
already proposed, and validated experimentally, by
Mullen, Lüthi, and Stephen.

] M. E. Mullen, B. Lüthi, M. J.
Stephen Sound velocity in a
Nematic Liquid Crystal, Physics
Review Letters, 1972.

Figure: Angular dependence of sound
velocity. T = 21 C, v = 10 MHz, and
H = 5 kOe. θ is the angle between the
field direction and propagation direction.
Solid line is 12.5 · 10−4 cos(θ)2.
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THE HELMHOLTZ–KORTEWEG EQUATION

1



The Helmholtz–Korteweg equation

TIME-HARMONIC CONDENSATION WAVES

Let us consider the continuity equation and the balance law of linear momentum in the absence
of external body forces, i.e.

∂tρ+∇ · (ρv) = 0, ρ
[
∂tv + (∇v)v

]
= −(∇ · σ) , (1)

where v(x , t) is the fluid velocity and σ is the Cauchy stress tensor.

We are interested in disturbances in the density field of the form ρ(x , t) = ρ0 (1 + s(x , t)),
where s(x , t) is a time-harmonic condensation, i.e.

s(x , t) = ℜ
[
S(x)e−iωt

]
, (2)

with ω being the frequency of the disturbances. Furthermore, we will assume that the
condensation is a small perturbation of the density field, i.e. |s(x , t)| = O(ε), with ε ≪ 1.
Lastly, we will assume that the velocity field is a small perturbation around the stationary
regime, i.e. ∥v(x , t)∥ = O(ε).
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The Helmholtz–Korteweg equation

A GENERALIZED HELMHOLTZ EQUATION

Under these assumptions, we can rewrite (1) as

ρ0
[
∂ts +∇ · v +O(ε2)

]
= 0, ∂tv +O(ε2) = −ρ−1(∇ · σ) .

Neglecting terms of order O(ε2), since |s(x , t)| ≪ 1 we have ρ−1 ≈ ρ−1
0 , thus

ρ0 [∂ts +∇ · v ] = 0, ∂tv = −ρ−1
0 (∇ · σ) .

Taking the time derivative of the continuity equation and substituting for ∂tv yields

ρ0∂
2
t s −∇ ·

(
∇ · σ

)
= 0. (1)

Substituting the time-harmonic ansatz (2) in the general wave equation (1) yields

ℜ
[
−ρ0ω

2S(x)e−iωt
]
= −ℜ

[
∇ ·

(
∇ · σ

)]
.
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The Helmholtz–Korteweg equation

STRESS TENSOR: SPHERICAL RESPONSE

The Cauchy stress tensor σ encodes the elastic response of the liquid crystal to any
defromation.

Spherical response

The isotropic response of a compressible fluid is usually modeled as a spherical stress
tensor, i.e. the stress tensor is given by

σ(I ) = −pId

where p is the fluid pressure, which we assume is of the form p = ρc20 , with c0 being the
speed of sound in the isotropic phase and ρ the density of the liquid crystal.
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The Helmholtz–Korteweg equation

STRESS TENSOR: TRANSVERSALLY ISOTROPIC RESPONSE

] P. Biscari, A. DiCarlo, S. S. Turzi Anisotropic wave propagation in nematic liquid crystals, Soft Matter,
2014.

Transversally isotropic response

Originally Ericksen modeled the elastic response of the liquid crystal as a transversally
isotropic material, i.e. the stress tensor is given by

σ(T ) = −pId + µ (n ⊗ n)

where n is the nematic director field and µ is a fixed constant.

� It can be proven that solution of the generalised wave equation (1) with a transversally
isotropic stress tensor present an anisotropic wave speed, compatible with the
experimental results.

� The transversally isotropic stress tensor, is incompatible with an hyperelastic formulation.
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The Helmholtz–Korteweg equation

STRESS TENSOR: NEMATIC–KORTEWEG RESPONSE

] E. Virga Variational theory for nematoacoustics, Physics Review E (2009).

Nematic–Korteweg response

Virga proposed a different model for the elastic response of the liquid crystal, which is
compatible with an hyperelastic formulation. The stress tensor is given by

σ(V ) = pI − αρ (∇ρ⊗∇ρ)− β (∇ρ · n)∇ρ⊗ n,

where the coefficients α and β are positive constants and the pressure is given by

p = ρc20 − ρ∇ · [ρ (α∇ρ+ β(∇ρ · n)n)] .

� It can be proven that this stress tensor is compatible with an hyperelastic formulation, i.e.
it can be derived from the free energy functional

W (ρ,∇ρ,n) = c20ρ+
1

2
α∥∇ρ∥2 + 1

2
β(∇ρ · n)2.
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The Helmholtz–Korteweg equation

THE NEMATIC HELMHOLTZ–KORTEWEG EQUATION

Consider the nematic Korteweg stress tensor and the time-harmonic ansatz we can rewrite the
right-hand side of the generalised wave equation (1) as

∇ · σ ≈ ℜ
[
− ρ0c

2
0∇S(x) + αρ30∇(∆S(x)) + ρ30u2∇ ((∇S · n)n)

]
.

Dividing by ρ0e
−ωt the generalised wave equation (1) yields

−ω2S(x)− c20∆S(x) + ρ20α∆
2S(x) + ρ20u2∇ · ∇

[
HSn · n +∇n∇S · n + (∇S · n)(∇ · n)

]
= 0.

A reasonable assumption is that the nematic director field n is regarded as undistorted at the
acoustic length scale, so that we can assume ∇n = 0.

Under this hypothesis we obtain the nematic Helmholtz–Korteweg equation, i.e.

−ω2S(x)− c20∆S(x) + ρ20α∆
2S(x) + ρ20u2∇ · ∇

[
n · HSn

]
= 0.
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The Helmholtz–Korteweg equation

BOUNDARY CONDITIONS

“PDE’s are made by God, the boundary conditions by the Devil !”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.
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BOUNDARY CONDITIONS

“PDE’s are made by God, the boundary conditions by the Devil !”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.

Sound-soft boundary conditions

Sound-soft boundary conditions impose that the excess-pressure defined as

c20ρ0S(x)− ρ30α∆S(x)− u2ρ
3
0

(
n · HSn

)
= 0.

vanish along the boundary. Sound-soft boundary conditions thus correspond to imposing
homogeneous Dirichlet boundary conditions on S(x) and

∆S(x) = −u2
α

(
n · HSn

)
.
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“PDE’s are made by God, the boundary conditions by the Devil !”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.

Sound-hard boundary conditions

Sound-hard boundary conditions also change since the normal derivative of the fluid
velocity ∂νv now satisfies the equation

iωρ0(n · ν) = c20∂νS(x)− ρ20α∂ν∆S(x)− ρ20u2∂ν
(
n · HSn

)
.

Sound-hard boundary conditions thus correspond to imposing homogeneous Neumann
boundary conditions on S(x) and

∂ν ∆S(x) = −u2
α
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The Helmholtz–Korteweg equation

BOUNDARY CONDITIONS

“PDE’s are made by God, the boundary conditions by the Devil !”
A. Turing, “The other place”, 1938.

We will here discuss three different types of boundary conditions, i.e.

Impedance boundary conditions

Some computation shows that the impedance boundary conditions for the nematic
Helmholtz–Korteweg equation are equivalent to imposing Robin boundary conditions
on S(x) and

∂ν ∆S(x) = iζ∆S(x) + iζ
u2
α

(
n · HSn

)
− u2

α
∂ν

(
n · HSn

)
,

where ζ is the impedance of the boundary.
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ANALYSIS

2



Analysis

INDEFINITENESS OF HELMHOLTZ-LIKE PROBLEMS

Let X be a separable Hilbert space. For given k ≫ 0, f ∈ L2(Ω), find u ∈ X s.t.

a(u, v) := e(u, v)− k2(u, v)L2(Ω) = (f , v)L2(Ω) ∀v ∈ X , (P)

where e(·, ·) is the bilinear form associated to the eigenvalue problem: find u ∈ X , λ ∈ C such
that

e(u, v) = λ(u, v)L2(Ω).

We will assume this eigenvalue problem is well-posed and the associated solution operator is
compact and self-adjoint.

� the eigenfunctions {e(i)}i∈N form an orthonormal basis of X

� suppose ∃i∗ s.t. λ(i∗) < k2 < λ(i∗+1), then (P) is indefinite:

a(e(i∗), e(i∗)) = λ(i∗) − k2 < 0 < λ(i∗+1) − k2 = a(e(i∗+1), e(i∗+1))
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that

e(u, v) = λ(u, v)L2(Ω).

We will assume this eigenvalue problem is well-posed and the associated solution operator is
compact and self-adjoint.

� the eigenfunctions {e(i)}i∈N form an orthonormal basis of X

� suppose ∃i∗ s.t. λ(i∗) < k2 < λ(i∗+1), then (P) is indefinite:

a(e(i∗), e(i∗)) = λ(i∗) − k2 < 0 < λ(i∗+1) − k2 = a(e(i∗+1), e(i∗+1))
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Analysis

T-COERCIVITY

] P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA,
2012.

A bijective ⇔ ∃ T bijective s.t. AT is coercive

T-coercivity

We call A ∈ L(X ,X ′) T-coercive if there exists a bijective operator T ∈ L(X ) s.t.
AT ∈ L(X ,X ′) is coercive, i.e. ℜ{⟨ATu, u⟩X ′,X} ≥ α∥u∥2X .

� T-coercivity equivalent to well-posedness (necessary & sufficient)

� recover coercivity with T = Id

� not directly inherited to the discrete level

U. Zerbinati Helmholtz–Korteweg Leicester, 10th Jun. ’25 11 / 19



Analysis

T-COERCIVITY

] P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA,
2012.

A bijective ⇔ ∃ T bijective s.t. AT is coercive

T-coercivity

We call A ∈ L(X ,X ′) T-coercive if there exists a bijective operator T ∈ L(X ) s.t.
AT ∈ L(X ,X ′) is coercive, i.e. ℜ{⟨ATu, u⟩X ′,X} ≥ α∥u∥2X .

� T-coercivity equivalent to well-posedness (necessary & sufficient)

� recover coercivity with T = Id

� not directly inherited to the discrete level

U. Zerbinati Helmholtz–Korteweg Leicester, 10th Jun. ’25 11 / 19



Analysis

T-COERCIVITY

] P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA,
2012.

A bijective ⇔ ∃ T bijective s.t. AT is coercive

T-coercivity

We call A ∈ L(X ,X ′) T-coercive if there exists a bijective operator T ∈ L(X ) s.t.
AT ∈ L(X ,X ′) is coercive, i.e. ℜ{⟨ATu, u⟩X ′,X} ≥ α∥u∥2X .

� T-coercivity equivalent to well-posedness (necessary & sufficient)

� recover coercivity with T = Id

� not directly inherited to the discrete level

U. Zerbinati Helmholtz–Korteweg Leicester, 10th Jun. ’25 11 / 19



Analysis

T-COERCIVITY

] P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA,
2012.

A bijective ⇔ ∃ T bijective s.t. AT is coercive

T-coercivity

We call A ∈ L(X ,X ′) T-coercive if there exists a bijective operator T ∈ L(X ) s.t.
AT ∈ L(X ,X ′) is coercive, i.e. ℜ{⟨ATu, u⟩X ′,X} ≥ α∥u∥2X .

� T-coercivity equivalent to well-posedness (necessary & sufficient)

� recover coercivity with T = Id

� not directly inherited to the discrete level

U. Zerbinati Helmholtz–Korteweg Leicester, 10th Jun. ’25 11 / 19



Analysis

T-COERCIVITY

] P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA,
2012.

A bijective ⇔ ∃ T bijective s.t. AT is coercive

T-coercivity

We call A ∈ L(X ,X ′) T-coercive if there exists a bijective operator T ∈ L(X ) s.t.
AT ∈ L(X ,X ′) is coercive, i.e. ℜ{⟨ATu, u⟩X ′,X} ≥ α∥u∥2X .

� T-coercivity equivalent to well-posedness (necessary & sufficient)

� recover coercivity with T = Id

� not directly inherited to the discrete level

U. Zerbinati Helmholtz–Korteweg Leicester, 10th Jun. ’25 11 / 19



Analysis

CONSTRUCTION OF T – EXAMPLE

For given k >> 0, f ∈ L2(Ω), find u ∈ X s.t.

a(u, v) := e(u, v)− k2(u, v)L2(Ω) = (f , v)L2(Ω) ∀v ∈ X , (P)

� {λ(i), e(i)}i∈N eigenpairs associated with e(·, ·), i∗ ∈ N s.t. λ(i∗) < k2 < λ(i∗+1)

� construct T ∈ L(X ) bijective, s.t.

Te(i) =

{
−e(i) if i ≤ i∗;

+e(i) if i > i∗.

� can show coercivity of a(T ·, ·) since

a(Te(i), e(i)) =

{
k2 − λ(i) if i ≤ i∗

λ(i) − k2 if i > i∗
> 0.
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Analysis

WEAK FORMULATION

We want to find u ∈ X such that

a(u, v) = (f , v)L2(Ω) ∀v ∈ X ,

where

a(u, v) := α(∆u,∆v)L2(Ω) + β(nT (Hu)n,∆v)L2(Ω) + (∇u,∇v)L2(Ω)︸ ︷︷ ︸
=:e(u,v)

−k2(u, v)L2(Ω)

We will only consider sound-soft boundary conditions for which X = H2
0 (Ω) := H2(Ω) ∩ H1

0 (Ω)
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Analysis

CONTINUOUS ANALYSIS: THE EIGENVALUE PROBLEM

Find u ∈ H2
0 (Ω), λ ∈ C s.t. e(u, v) = λ(u, v)L2(Ω) for all v ∈ H2

0 (Ω),

e(u, v) := α(∆u,∆v)L2(Ω) + β(nT (Hu)n,∆v)L2(Ω) + (∇u,∇v)L2(Ω).

If β is sufficiently small, the EVP is well-posed and the solution operator is compact and
self-adjoint.

� self-adjointness of β(nT (Hu)n,∆v)L2(Ω) can be proved integrating by parts.

� coercivity of e(·, ·) on H2
0 (Ω) can be proven using Poincaré inequality.

� compactness follows from the compact embedding H2
0 (Ω) ↪→ L2(Ω).
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� compactness follows from the compact embedding H2
0 (Ω) ↪→ L2(Ω).

U. Zerbinati Helmholtz–Korteweg Leicester, 10th Jun. ’25 14 / 19



Analysis

CONTINUOUS ANALYSIS: T-COERCIVITY

� ∃ eigenpairs (λ(i), e(i))i∈N of e(·, ·) s.t. (e(i))i∈N forms an orthonormal basis of X

� set i∗ := min{i ∈ N : λ(i) < k2} and define

W := span0≤i≤i∗{e
(i)}, T := IdX −2PW

� T bijective & acts on eigenfcts. as Te(i) =

{
−e(i) if λ(i) < k2;

+e(i) if λ(i) > k2.

� We have that

e(Tu, u)− k2(Tu, u)L2

=
∑
i≤i∗

Cλ(k
2 − λ(i))(u(i))2 +

∑
i>i∗

Cλ(λ
(i) − k2)(u(i))2 ≥ γ∥u∥2X
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Analysis

NUMERICAL SIMULATIONS
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Figure: The convergence of the H2-norm of the error for the Helmholtz–Korteweg equation for
different values of k (top row) and the corresponding manufactured solution (bottom row).

U. Zerbinati Helmholtz–Korteweg Leicester, 10th Jun. ’25 16 / 19



FEATURES OF THE MODEL

3



Features of the model

ANISOTROPIC SPEED OF SOUND

We demonstrate the anisotropic speed of sound considering as right-hand side asymmetric
Gaussian pulse in (0, 0), impedance BCs, k = 40, α = 10−2

β = 0 β = 5 · 10−3 β = 5 · 10−3 β = 5 · 10−3
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Features of the model

TOTAL INTERNAL REFLECTION

Figure: An acoustic reflection phenomenon in a nematic Korteweg fluid can be caused by a
discontinuity in the nematic director field. We consider a Gaussian beam travelling upwards in a
semicircular domain, with two different nematic director fields.

U. Zerbinati Helmholtz–Korteweg Leicester, 10th Jun. ’25 18 / 19



Features of the model

SCATTERING BY A CIRCULAR OBSTACLE

0 1 2 3

−0.5

0

0.5

1 ξ = 0

ξ = π
2

Figure: The scattered wave produced by a circular obstacle in a nematic Korteweg fluid with α = 10−3

and u2 = 5 · 10−4, has a greater amplitude when the incoming plane wave is orthogonal to the nematic
director field. Recall that ξ is the angle between d and n. We simulated a plane wave propagating
parallel to the y -axis and impinging on a circular obstacle, centered at the origin (left). The amplitude
of the scattered wave, for different values of ξ, is measured along the y -axis (right). An adiabatic layer
has been used to implement the Sommerfeld radiation condition on the outer bounday.
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