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THE NORMAL EQUATION

Let us consider the following linear system of equations [ ]
SIMAX Vol. 13, Iss. 3, 1992 (N.
Ax = b, AeR™" x,beR" M. Nachtigal, S. C. Reddy, L. N.
o o Trefethen),
T L. N. Trefethen and D. Bau, IlI,
A 7é A Numerical Linear Algebra, 1997,

SIAM.

In order to solve the system, we can consider the normal
equation, i.e.
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Let us consider the following linear system of equations [ ]
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Ax = b, AeR™" x,beR" M. Nachtigal, S. C. Reddy, L. N.
o o Trefethen),
T L. N. Trefethen and D. Bau, IlI,
A 7é A Numerical Linear Algebra, 1997,

SIAM.

In order to solve the system, we can consider the normal
equation, i.e.

B=ATAx=A"b

P How to quickly access AT and B ?
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equation, i.e. 4 Unfortunately the condition
number of AT A is the square of
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THE NORMAL EQUATION

Let us consider the following linear system of equations [ ]
SIMAX Vol. 13, Iss. 3, 1992 (N.
Ax = b, AeR™" x,beR" M. Nachtigal, S. C. Reddy, L. N.
o o Trefethen),
T L. N. Trefethen and D. Bau, IlI,
A 7é A Numerical Linear Algebra, 1997,

SIAM.

In order to solve the system, we can consider the normal

equation, i.e. 4 Unfortunately the condition
number of AT A is the square of
the condition number of A.

B=ATAx=A"b

P We now have a symmetric
positive definite system, that can

P How to quickly access A™ and B ? be solved using CG (CGNE).
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

M SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

Good preconditioners — Classical Definition

P is a good preconditioner if P~'A has clustered eigenvalues.
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M SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

Good preconditioners — Classical Definition

P is a good preconditioner if P~'A has clustered eigenvalues.

Unfortunately given a good preconditioner P for A we might not have good preconditioner
G=PTPfor ATA
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

Good preconditioners — Classical Definition

P is a good preconditioner if P~'A has clustered eigenvalues.

Unfortunately given a good preconditioner P for A we might not have good preconditioner

G:=P'PforATA
bo
A=

bo
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

M SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

Good preconditioners — Classical Definition

P is a good preconditioner if P~'A has clustered eigenvalues.

Unfortunately given a good preconditioner P for A we might not have good preconditioner
G=PTPfor ATA

1 (bo/bp-1)?
PA= ,  G'B=
1 (bn—1/bo)?
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),
QJRMS Vol. 64, Iss. 3, 2022 (S. Gratton, Et Al.).

Gratton—Giirol-Simon—Toint

If the matrix P is such that ||/ — AP~ ||, < /2 —1— 6, then
ANG™IB) C (V20 + 62,2 — /25 — 62).
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),
QJRMS Vol. 64, Iss. 3, 2022 (S. Gratton, Et Al.).

Gratton—Giirol-Simon—Toint

If the matrix P is such that ||/ — AP~ ||, < /2 —1— 6, then
ANG™B) C (V20 + 62,2 — /25 — 62).

We consider the matrix T := | — AP~L, and expand G !B as
G IB=P P TATA~P TATAP 1=/ - T-TT4+T'T.
Since A(G™1B) C [-||G1B||2, || G~1B||2], we can easily see that
—1=2 Tl = ITIZ <A< 142 Tl + [ TI3.
Substituing ||/ — AP7Y||> < /2 — 1 — § we obtained the desired result.
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CROSS PRECONDITIONING

We would like to give a different intuition of good preconditioners for normal equations. To
this aim we consider the previously observed similarity,

G 'B=P P TATA~ PTTATAP™! = (AP7HT(APTY).

Hence, the closer the matrix AP~ ! is to an orthogonal matrix, the closer G~ !B is to the
identity matrix.
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CROSS PRECONDITIONING

We would like to give a different intuition of good preconditioners for normal equations. To
this aim we consider the previously observed similarity,

G 'B=P P TATA~ PTTATAP™! = (AP7HT(APTY).

Hence, the closer the matrix AP~ ! is to an orthogonal matrix, the closer G~ !B is to the
identity matrix.

Cross preconditioning

We say that the preconditioner P is a good left preconditioner for the normal equations
if it is a good right preconditioner for A, in the sense that ifl has clustered singular
values.
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CROSS PRECONDITIONING

The ideal preconditioner for A is unique, up to scaling, and it is the inverse of A.
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The ideal preconditioner for A is unique, up to scaling, and it is the inverse of A.

There is a much wider choice of good cross preconditioners for the normal equations, in
fact the space of orthogonal matrices has dimension n(n — 1)/2.
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CROSS PRECONDITIONING

The ideal preconditioner for A is unique, up to scaling, and it is the inverse of A.

There is a much wider choice of good cross preconditioners for the normal equations, in
fact the space of orthogonal matrices has dimension n(n — 1)/2.

QR decomposition

We can construct an ideal pre-
conditioner using the QR de-
composition of A, i.e.

P=R A=Q.R
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CROSS PRECONDITIONING

The ideal preconditioner for A is unique, up to scaling, and it is the inverse of A.

There is a much wider choice of good cross preconditioners for the normal equations, in
fact the space of orthogonal matrices has dimension n(n — 1)/2.

Polar decomposition

QR decomposition

We can construct an ideal pre- We can construct an ideal pre-
conditioner using the QR de- conditioner using the polar de-
composition of A, i.e. composition of A, i.e.

i
P-R A-Q,R P—(ATA), A-Q.P.
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APPLICATIONS TO FINITE DIFFERENCE SCHEMES




ADVECTION DIFFUSION ODE - CROSS PRECONDITIONING

We consider the classical advection-diffusion ODE in one [ |
dimension, i.e. R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial
—vii + [3[1 = fin (a7 b) C R, Differential Equations, 2007 ,SIAM.

u(a) =0, U(b) =1, v,p€ Rzo.
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ADVECTION DIFFUSION ODE - CROSS PRECONDITIONING

We consider the classical advection-diffusion ODE in one [ |
dimension, i.e. R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial
—vii + ﬁ[l = fin (a7 b) C R, Differential Equations, 2007 ,SIAM.

u(a) =0, U(b) =1, v,B€ Rzo.

For the moment we will consider neither diffusion nor
advection-dominated regimes, i.e. v =~ 3, and
discretisation over an equi-spaced mesh of step-size h.
Such a discretisation results in the matrix
B 2v v B )

. v
A_trldlag(h2 T

Oxford
Mathematics



ADVECTION DIFFUSION ODE - CROSS PRECONDITIONING

We consider the classical advection-diffusion ODE in one [ |
dimension, i.e. R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial
—vii + ﬁ[l = fin (a b) cR Differential Equations, 2007 ,SIAM.
) ?
u(a) =0, U(b) = 1, V,ﬁ € Rzo.

For the moment we will consider neither diffusion nor n | QR RQ QATA2 (AAT)2Q
advection-dominated regimes, i.e. v =~ 3, and 10 | 2 12 2 4
discretisation over an equi-spaced mesh of step-size h. 00 | 2 - 2 6
Such a discretisation results in the matrix A - 2 Y

2 Table: Comparison of the number of iterations for
A = tridia 7& . é l 71 ﬁ different preconditioners for the left preconditioned
= g h2 2h B2’ K2 2h normal equation. The CGNE method was

terminated when the absolute residual was less
than 102 If the method did not converge in
1000 iterations, we marked the number of
iterations with a dash.
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ADVECTION DIFFUSION ODE - UPWINDING

. . . . R. J. LeVeque, Finite Difference
In the case of advection—dominated regimes, i.e. v < f3, leiheds G Qe 2 P

it is better to opt for an upwinding scheme. In fact, in Differential Equations, 2007 ,SIAM.
the advection—dominated regime we might observe the

appearance of boundary layers, that are not well resolved

by the standard central difference scheme.
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ADVECTION DIFFUSION ODE - UPWINDING

. . . . R. J. LeVeque, Finite Difference
In the case of advection—dominated regimes, i.e. v < f3, leiheds G Qe 2 P

it is better to opt for an upwinding scheme. In fact, in Differential Equations, 2007 ,SIAM.
the advection—dominated regime we might observe the
appearance of boundary layers, that are not well resolved
by the standard central difference scheme.

109 — Exact Solution

Discrete Solution
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Applications To Finite Difference Schemes

ADVECTION DIFFUSION ODE - UPWINDING

. . . . R. J. LeVeque, Finite Difference
In the case of advection—dominated regimes, i.e. v < f3, leihedks G Ordfemy 2rd S

it is better to opt for an upwinding scheme. In fact, in Differential Equations, 2007 ,SIAM.
the advection—dominated regime we might observe the
appearance of boundary layers, that are not well resolved
by the standard central difference scheme.

1.0 — Exact Solution
Discrete Solution
The discretisation of this scheme results in the linear 084
system
0.6 4
. v B2 [ v
— - = S 0.4
A trldlag( et 2+h, 2 )
0.2 1
‘f
00 e g
0.‘0 0.‘2 0.‘4 O.‘ﬁ O.‘E 1.‘0
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ADVECTION DIFFUSION ODE - CROSS PRECONDITIONING

In the case of advection-dominated regimes, i.e. ¥ < 3, we can think of preconditioning A

with P defined as
P = tridiag <—f, i,o) .
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ADVECTION DIFFUSION ODE - CROSS PRECONDITIONING

In the case of advection-dominated regimes, i.e. ¥ < 3, we can think of preconditioning A

with P defined as
P = tridiag </; f,O) .

Normal preconditioning

For the normal equations we can think of preconditioning with P” P. In fact the matrix
PTP is close to discretising —3%ii and the AT A can be thought of as discretising the
normal PDE:

—2u® — B2ii=g, in (a,b) CR.
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Applications To Finite Difference Schemes

ADVECTION DIFFUSION ODE — CHOLESKY-QR

Since as v — 0 we know that P” P approaches A” A, we can think of P as an approximate
Cholesky factor of A” A. From Cholesky-QR we know that the Cholesky factor of A" A'is
the R factor of the QR decomposition of A, hence P is a good cross left preconditioner
for the normal equations.
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Applications To Finite Difference Schemes

ADVECTION DIFFUSION ODE — CHOLESKY-QR

Since as v — 0 we know that P” P approaches A” A, we can think of P as an approximate

Cholesky factor of A” A. From Cholesky-QR we know that the Cholesky factor of A" A'is
the R factor of the QR decomposition of A, hence P is a good cross left preconditioner

for the normal equations.

v | P(GMRES) R'R(CGNE) P'P (CGNE)

1-1072 199 217 216
5.1073 97 108 109
1-1073 17 19 19

Table: Comparison of the number of iterations for different preconditioners
for the left preconditioned normal equation. The CGNE and GMRES
methods were terminated when the absolute residual was less than 107>
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Applications To Finite Difference Schemes

ADVECTION DIFFUSION ODE — CHOLESKY-QR

Since as v — 0 we know that PTP approaches A ATA we can think of P as an approximate

Cholesky factor of AT A. From Cholesky-QR we know that the Cholesky factor of AT A is
the R factor of the QR decomposition of A, hence P is a good cross left preconditioner

for the normal equations.

v | P(GMRES) R'R(CGNE) P'P (CGNE) n R"R (CGNE) PTP (CGNE)
1-1072 199 217 216 1250 36 37
5.1073 97 108 109 2500 69 69
1-1073 17 19 19 5000 134 136

10000 249 251

Table: Comparison of the number of iterations for different preconditioners
for the left preconditioned normal equation. The CGNE and GMRES
methods were terminated when the absolute residual was less than 107>

Table: The CGNE methods were terminated
when the absolute residual was less than 10~°

Oxford
Mathematics



APPLICATIONS TO THE FINITE ELEMENT METHOD




ADVECTION DIFFUSION PDE

We consider the classical advection-diffusion PDE in two [ ]
dimensions, i.e. H. Elman, D. Silvester, A. Wathen,
Finite Elements and Fast lterative
LU= —vAu+ [5 Yu=FfinQc Rd. Solvers, 2005, Oxford University
& ’ Press

u=gondQ, withv < ||5]|, V-8=0.

Oxford
Mathematics



Applications To The Finite Element Method

ADVECTION DIFFUSION PDE m
We consider the classical advection-diffusion PDE in two [ ]
dimensions, i.e. H. Elman, D. Silvester, A. Wathen,
Finite Elements and Fast lterative
LU= —vAu+ [5 Yu=FfinQc Rd. Solvers, 2005, Oxford University
& ’ Press

u=gondQ, withv < ||5]|, V-8=0.

Finite Element Discretisation

Fix a discrete space V}, C H3(Q) and look for u € Vi, such that

(ﬁuh, Vh) = V(VU}N vvh)[_z(g) A (6 : Vuh, Vh)L2(Q) = (f7 Vh)Lz(Q) for any vy € Vh.
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THE NORMAL EQUATIONS

We now need to understand what are the normal equations associated with the linear system,

Ax = b, with A,_, = (,égo,'., (pj)p(ﬂ) and bj = (f,@j)g(g).
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THE NORMAL EQUATIONS

We now need to understand what are the normal equations associated with the linear system,

Ax = Q, with A,_, = (ﬁgo,',goj)Lz(Q) and bj = (f,@j)p(g).

The first thing we need to understand is what is A", in fact AT is neither Hilbert adjoint
of A nor the Banach adjoint seen as the operator A: V,, C H3}(Q) — H~}(Q) C Vj.
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THE NORMAL EQUATIONS

We now need to understand what are the normal equations associated with the linear system,

Ax = Q, with A,_, = (ﬁgo,',goj)Lz(Q) and bj = (f,@j)p(g).

The first thing we need to understand is what is A", in fact AT is neither Hilbert adjoint
of A nor the Banach adjoint seen as the operator A: V,, C H3}(Q) — H~}(Q) C Vj.

In fact, AT is an operator itself of the form AT : V}, C H3(Q) — H1(Q) C V/ which
corresponds to the discretisation of the Hilbert adjoint of L, i.e.

AT = Ai = (L), 0i)iz) = (5, L*01)12@) = (L 01, ) 12(0),
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THE NORMAL EQUATIONS - PRIMAL DUAL ERROR

If we consider the classical normal equations, i.e. ATAx=A"b.
Primal Dual Error

We notice that there is a primal dual error in the classical formulation of the normal
equations.

.
Vi C HY(2) A H1c % Vi C H}() AL H e 7
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THE NORMAL EQUATIONS - PRIMAL DUAL ERROR

If we consider the classical normal equations, i.e. ATAx=A"b.

Primal Dual Error

We notice that there is a primal dual error in the classical formulation of the normal
equations.

.
Vs C HI(Q) 2 H1 c v Vs c Hi(Q) A5 Ht e v

To make sense of the normal equations we need to consider a Riesz map T : V| — V.

§
Ve HYQ) D H e v — T s vy c HYQ A Ht e v
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Applications To The Finite Element Method
Mathematical

THE NORMAL EQUATIONS

The Riesz map gives rise to a discrete operator T : V] — V}, which is symmetric and positive
definite. Therefore if we consider the normal equations with respect to the Riesz map, i.e.

TTAx=ATTb,

>

we can rewrite them using a Cholesky factorisation of T,i.e. T = C'C.
(CA)T(CA)x = (CA)" Cb,

hence the previous normal equation are associated with the linear system CAx = Cb.
P The normal equations are still symmetric and positive definite. Hence we can solve them
using CGNE. The cross-preconditioning idea is still applicable.
P The condition number of the normal equations is the square of the condition number of
the original system.

Oxford
Mathematics



THE NORMAL EQUATIONS - [2-RIESZ MAP

We can consider as Riesz map the L?-Riesz map, i.e.

(Tf,vi)i2(q) = (f, va) for any v, € Vi, f € Vj
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THE NORMAL EQUATIONS - [2-RIESZ MAP

We can consider as Riesz map the L?-Riesz map, i.e.
(Tf, vh)i2() = (f, va) for any v, € Vi, f € V;

Using the L2-Riesz map the new normal is
approximating, in the limit v — 0, the problem: find
u € H}(Q) such that

(B® BVU,VV)LQ(Q) = (g, V)LZ(Q) for any v € H&(Q).
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THE NORMAL EQUATIONS - [2-RIESZ MAP

We can consider as Riesz map the L?-Riesz map, i.e. v CGNE Iterations
1-1072 4231
-3
Tf,v = (f,vp) forany vy € Vj, f € Vj 510 3803
( ) h)LZ(Q) < ’ h> Y Vh hy h 25.10-3 3307
. . . 1.25-10°3 2419
Using the L2-Riesz map the new normal is
approximating, in the limit ¥ — 0, the problem: find Table: The CGNE methods were terminated
1 when the absolute residual was less than 107°.
u € Hy(92) such that

(B® ,BVU,VV)LZ(Q) = (g, V)LZ(Q) for any v € H&(Q).

Due to the function space involved in the weak form, we chose the wrong Riesz map.

=il
HI(Q) —— H1 12— P¢HYQ) —— p
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THE NORMAL EQUATIONS - H'-RIESZ MAP

We can consider as Riesz map the H!-Riesz
map, i.e.

(VTf,VVh)Lz(Q) = I/il<1r7 vh), Yvp € Vi, f € V,g.
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THE NORMAL EQUATIONS - H'-RIESZ MAP

We can consider as Riesz map the H!-Riesz
map, i.e.

(VTf,VVh)Lz(Q) = I/il<f7 Vh>, Yvp € Vp, f € V,:.

Using this Riesz map the normal equations éT TAx = éT T b is approximating the problem:
find u € H}(Q) such that

v(Vu,Vv) ) + v 1My Bu, Ny Bv) 2, forany v e H&(Q).
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THE NORMAL EQUATIONS - H'-RIESZ MAP

We can consider as Riesz map the H!-Riesz v 32 %32 | 64 x64 | 128 x 128
map, i.e. 1-102 5 5 5
0 , 5.1073 3 3 3
(V Tf, VVh)LZ(Q) = <f7 Vh>, Vv € Vi, f € V. 2.5.1073 8 8 8
1.25-1073 3 3 3

Table: The CGNE methods were terminated when the
absolute residual was less than 107°.

Using this Riesz map the normal equations éT TAx = éT T b is approximating the problem:

find u € H}(Q) such that

v(Vu,Vv) ) + v 1My Bu, Ny Bv) 2, forany v e H&(Q).
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THE NORMAL EQUATIONS — PRECONDITION USING THE MASS MATRIX AND AMG

Find u, € V}, such that V71(5Uh,/8Vh)L2(Q), for any vy € V.

v 32x32 | 64 x 64 ‘ 128 x 128 ‘ 256 x 256 | 512 x 512
1-1072 9 14 21 24 26
5.1073 13 13 19 28 88

25-1073 19 17 17 25 37
1.25-103 27 24 21 22 88

Table: Comparison of the number of iterations for the CGNE method preconditioned by the inversion
via PETSc GAMG, for different values of v and different mesh sizes. The wind is fixed to 5 = (1,0)
and as right-hand side we consider the function f(x,y) = 1. The CGNE method was terminated when
the absolute residual was less than 107°.
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Applications To The Finite Element Method

00et00 02 04 06 08 106400 00et00 02 04 06 08 100400

exp(~(7- Buy)?)
04 06

exp(~(7- fuy)?)
04 06

exp(~(7- fuy)?)
04 06

exp(~(7-Bun)?)
00000 02 08 100400 000400 02 08 100400 000400 02 08 100400 000400 02 04 06 08 100400

Figure: The discrete solution us of the advection-diffusion equation (1) for different value of v at the
finest mesh size 512 x 512, together with exp(—|V - Bus?).
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THE NORMAL EQUATIONS — PRECONDITION USING THE MASS MATRIX AND AMG

Find u, € V}, such that V71(5Uh,/8Vh)L2(Q), for any vy € V.

v 32 % 32 | 64 x 64 | 128 x 128 | 256 x 256
1-1072 10 15 20 23
51073 11 15 22 30

25-1073 | 17 16 21 32
1.25-107% | 26 24 23 30

Table: Comparison of the number of iterations for the CGNE method preconditioned by the inversion
via PETSc GAMG, for different values of v and different mesh sizes. The wind is fixed to v/28 = (1,1)
and as right-hand side we consider the function f(x,y) = 1. The CGNE method was terminated when
the absolute residual was less than 107°.
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Applications To The Finite Element Method

000400 0s 1 15 200400 000400 0s 1 15 200400 008400 05 1 5 200400

exp(=(-u)?)
04 06

exp(=(9-uy)?) exp(=(9-uy)?)
04 06 04 06

exp(=(9-u))
04 06

006400 02 08 100400 006400 02 08 100400 006400 02 08 100400 006400 02 08 100400

Figure: The discrete solution uj, of the convection-diffusion equation (1), with v23 = (1,1), for
different values of v at the finest mesh size 512 x 512, together with exp(—|V - Bus|?).
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THE NORMAL EQUATIONS - PROJECTED MASS MATRIX AND SSOR

Find up € V} such that v~ (My Bup, My Bvh)i2(q), for any vy € Vi,

v | 32x 32 | 64 x 64 | 128 x 128
1-1072 14 22 40
5.1073 16 21 33

25-1073 22 22 29
1.25.1073 30 30 34

Table: Comparison of the number of iterations for the CGNE method preconditioned by symmetric
successive over-relaxation, for different values of v and different mesh sizes. The wind is fixed to
V2 = (1,1) and as right-hand side we consider the function f(x,y) = 1. The CGNE method was
terminated when the absolute residual was less than 1072,
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THE NORMAL EQUATIONS - PROJECTED MASS MATRIX AND GMG

Find up € V} such that v~ (My Bup, My Bvh)i2(q), for any vy € Vi,

v | 32x 32 | 64 x 64 | 128 x 128
1-1072 4 5 8
5.10°3 4 5 7

2.5-1073 5 5 7
1.25.1073 7 7 7

Table: Comparison of the number of iterations for the CGNE method preconditioned by geometric
multigird with SOR smoothing, for different values of v and different mesh sizes. The wind is fixed to
V2 = (1,1) and as right-hand side we consider the function f(x,y) = 1. The CGNE method was
terminated when the absolute residual was less than 107°.
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TAKE AWAY MESSAGE

» The normal equations are a powerful tool to solve linear systems arising from PDEs, for
which we have a very good understanding of convergence.
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TAKE AWAY MESSAGE

» The normal equations are a powerful tool to solve linear systems arising from PDEs, for
which we have a very good understanding of convergence.

P The correct notion of a good preconditioner for the normal equations is crucial to
understand how to precondition the normal equations. We propose the notion of cross
preconditioning.
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TAKE AWAY MESSAGE

» The normal equations are a powerful tool to solve linear systems arising from PDEs, for
which we have a very good understanding of convergence.

P The correct notion of a good preconditioner for the normal equations is crucial to
understand how to precondition the normal equations. We propose the notion of cross
preconditioning.

P A careful study of the normal equations can suggest a new PDE to use as preconditioner.
Often these PDEs are simpler to solve than the original ones. We refer to this idea as
normal preconditioning.
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TAKE AWAY MESSAGE

» The normal equations are a powerful tool to solve linear systems arising from PDEs, for
which we have a very good understanding of convergence.

P The correct notion of a good preconditioner for the normal equations is crucial to
understand how to precondition the normal equations. We propose the notion of cross
preconditioning.

P A careful study of the normal equations can suggest a new PDE to use as preconditioner.
Often these PDEs are simpler to solve than the original ones. We refer to this idea as
normal preconditioning.

P We should reconsider the use of normal equations for solving linear systems arising
from PDEs.
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FUTURE WORK

P There is an intimate connection between the notion of normal preconditioning and a
method known as discontinuous Petrov-Galerkin. We would like to further explore this
connection and understand the optimisation problem associated with the normal equations
here proposed.
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FUTURE WORK

P There is an intimate connection between the notion of normal preconditioning and a
method known as discontinuous Petrov-Galerkin. We would like to further explore this
connection and understand the optimisation problem associated with the normal equations
here proposed.

4 Explore the notion of normal preconditioning for higher-order finite element
discretisation.
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Applications To The Finite Element Method

FUTURE WORK

P There is an intimate connection between the notion of normal preconditioning and a

method known as discontinuous Petrov-Galerkin. We would like to further explore this
connection and understand the optimisation problem associated with the normal equations
here proposed.

Explore the notion of normal preconditioning for higher-order finite element
discretisation.

Apply normal preconditioning to other PDEs such as the Helmholtz equation, using as
Riesz map the T-coercive map. We would also like to study the Oseen equation and C*
nearly singular problems such as the Helmholtz—Korteweg equation.

Oxford
Mathematics



Applications To The Finite Element Method

FUTURE WORK

P There is an intimate connection between the notion of normal preconditioning and a

method known as discontinuous Petrov-Galerkin. We would like to further explore this
connection and understand the optimisation problem associated with the normal equations
here proposed.

Explore the notion of normal preconditioning for higher-order finite element
discretisation.

Apply normal preconditioning to other PDEs such as the Helmholtz equation, using as
Riesz map the T-coercive map. We would also like to study the Oseen equation and C*
nearly singular problems such as the Helmholtz—Korteweg equation.

Understand how to efficiently compute the polar decomposition so that we can construct a
good cross preconditioner starting from the normal PDE, for LSQR type methods.
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THANK YOU!
Lorenzo now accepts questions.

Some more comments on the normal equations: With a focus on discretisation of partial
differential equations

L. LAzzZARINO, Y. NAKATSUKASA, UMBERTO ZERBINATI*
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