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THE NORMAL EQUATION

Let us consider the following linear system of equations

Ax = b, A ∈ Rn×n, x , b ∈ Rn.

AT ̸= A

In order to solve the system, we can consider the normal
equation, i.e.

B := ATAx = ATb

� How to quickly access AT and B ?

]
SIMAX Vol. 13, Iss. 3, 1992 (N.
M. Nachtigal, S. C. Reddy, L. N.
Trefethen),

L. N. Trefethen and D. Bau, III,
Numerical Linear Algebra, 1997,
SIAM.

� Unfortunately the condition
number of ATA is the square of
the condition number of A.

� We now have a symmetric
positive definite system, that can
be solved using CG (CGNE).
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HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

] SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

Good preconditioners – Classical Definition

P is a good preconditioner if P−1A has clustered eigenvalues.

Unfortunately given a good preconditioner P for A we might not have good preconditioner

G := PTP for ATA.
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b0 . . .

bn−1

 , P =

 b0

. .
.

bn−1

 .

L. Lazzarino, Y. Nakatsukasa, U. Zerbinati Normal Preconditioning Oxford, 5th Dec. ’24 2 / 23



HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

] SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

Good preconditioners – Classical Definition

P is a good preconditioner if P−1A has clustered eigenvalues.

Unfortunately given a good preconditioner P for A we might not have good preconditioner

G := PTP for ATA.

P−1A =

 1

. .
.

1

 , G−1B =

(b0/bn−1)
2

. . .

(bn−1/b0)
2

 .

L. Lazzarino, Y. Nakatsukasa, U. Zerbinati Normal Preconditioning Oxford, 5th Dec. ’24 2 / 23



HOW CAN WE PRECONDITION THE NORMAL EQUATIONS?

]
SIREV Vol. 64, Iss. 3, 2022 (A. Wathen),

QJRMS Vol. 64, Iss. 3, 2022 (S. Gratton, Et Al.).

Gratton–Gürol–Simon–Toint

If the matrix P is such that ∥I − AP−1∥2 ≤
√
2− 1− δ, then

Λ(G−1B) ⊂ (
√
2δ + δ2, 2−

√
2δ − δ2).

We consider the matrix T := I − AP−1, and expand G−1B as

G−1B = P−1P−TATA ∼ P−TATAP−1 = I − T − TT + TTT .

Since Λ(G−1B) ⊂ [−∥G−1B∥2, ∥G−1B∥2], we can easily see that

−1− 2∥T∥2 − ∥T∥22 ≤ λ ≤ 1 + 2∥T∥2 + ∥T∥22.
Substituing ∥I − AP−1∥2 ≤

√
2− 1− δ we obtained the desired result.
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CROSS PRECONDITIONING

We would like to give a different intuition of good preconditioners for normal equations. To
this aim we consider the previously observed similarity,

G−1B = P−1P−TATA ∼ P−TATAP−1 = (AP−1)T (AP−1).

Hence, the closer the matrix AP−1 is to an orthogonal matrix, the closer G−1B is to the
identity matrix.

Cross preconditioning

We say that the preconditioner P is a good left preconditioner for the normal equations
if it is a good right preconditioner for A, in the sense that AP−1 has clustered singular
values.
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CROSS PRECONDITIONING

The ideal preconditioner for A is unique, up to scaling, and it is the inverse of A.

There is a much wider choice of good cross preconditioners for the normal equations, in
fact the space of orthogonal matrices has dimension n(n − 1)/2.

QR decomposition

We can construct an ideal pre-
conditioner using the QR de-
composition of A, i.e.

P = R, A = Q
QR

R.

Polar decomposition

We can construct an ideal pre-
conditioner using the polar de-
composition of A, i.e.

P = (ATA)
1
2 , A = Q

P
P.
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APPLICATIONS TO FINITE DIFFERENCE SCHEMES

1



Applications To Finite Difference Schemes

ADVECTION DIFFUSION ODE – CROSS PRECONDITIONING

We consider the classical advection-diffusion ODE in one
dimension, i.e.

− νü + βu̇ = f in (a, b) ⊂ R,
u(a) = 0, u(b) = 1, ν, β ∈ R≥0.

For the moment we will consider neither diffusion nor
advection-dominated regimes, i.e. ν ≈ β, and
discretisation over an equi-spaced mesh of step-size h.
Such a discretisation results in the matrix

A = tridiag

(
− ν

h2
− β

2h
,
2ν

h2
,− ν

h2
+

β

2h

)

]
R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial
Differential Equations, 2007 ,SIAM.

n QR RQ Q(ATA)1/2 (AAT )1/2Q

10 2 12 2 4
100 2 - 2 6
1000 2 - 2 7

Table: Comparison of the number of iterations for
different preconditioners for the left preconditioned
normal equation. The CGNE method was
terminated when the absolute residual was less
than 10−12. If the method did not converge in
1000 iterations, we marked the number of
iterations with a dash.
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Applications To Finite Difference Schemes

ADVECTION DIFFUSION ODE – UPWINDING

In the case of advection–dominated regimes, i.e. ν ≪ β,
it is better to opt for an upwinding scheme. In fact, in
the advection–dominated regime we might observe the
appearance of boundary layers, that are not well resolved
by the standard central difference scheme.

The discretisation of this scheme results in the linear
system

A = tridiag

(
− ν

h2
− β

h
,
2ν

h2
+

β

h
,− ν

h2

)
.

]
R. J. LeVeque, Finite Difference
Methods for Ordinary and Partial
Differential Equations, 2007 ,SIAM.
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Applications To Finite Difference Schemes

ADVECTION DIFFUSION ODE – CROSS PRECONDITIONING

In the case of advection-dominated regimes, i.e. ν ≪ β, we can think of preconditioning A
with P defined as

P = tridiag

(
−β

h
,
β

h
, 0

)
.

Normal preconditioning

For the normal equations we can think of preconditioning with PTP. In fact the matrix

PTP is close to discretising −β2ü and the ATA can be thought of as discretising the
normal PDE :

−ν2u(4) − β2ü = g , in (a, b) ⊂ R.
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Applications To Finite Difference Schemes

ADVECTION DIFFUSION ODE – CHOLESKY-QR

Since as ν → 0 we know that PTP approaches ATA, we can think of P as an approximate

Cholesky factor of ATA. From Cholesky-QR we know that the Cholesky factor of ATA is
the R factor of the QR decomposition of A, hence P is a good cross left preconditioner
for the normal equations.

ν P (GMRES) RTR (CGNE) PTP (CGNE)

1 · 10−2 199 217 216
5 · 10−3 97 108 109
1 · 10−3 17 19 19

Table: Comparison of the number of iterations for different preconditioners
for the left preconditioned normal equation. The CGNE and GMRES
methods were terminated when the absolute residual was less than 10−5

n RTR (CGNE) PTP (CGNE)

1250 36 37
2500 69 69
5000 134 136
10000 249 251

Table: The CGNE methods were terminated
when the absolute residual was less than 10−5
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APPLICATIONS TO THE FINITE ELEMENT METHOD
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Applications To The Finite Element Method

ADVECTION DIFFUSION PDE

We consider the classical advection-diffusion PDE in two
dimensions, i.e.

Lu := −ν∆u + β · ∇u = f in Ω ⊂ Rd ,

u = g on ∂Ω, with ν ≪ ∥β∥, ∇ · β = 0.

]
H. Elman, D. Silvester, A. Wathen,
Finite Elements and Fast Iterative
Solvers, 2005, Oxford University
Press

Finite Element Discretisation

Fix a discrete space Vh ⊂ H1
0 (Ω) and look for uh ∈ Vh such that

(L̂uh, vh) = ν(∇uh,∇vh)L2(Ω) + (β · ∇uh, vh)L2(Ω) = (f , vh)L2(Ω) for any vh ∈ Vh. (1)
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Applications To The Finite Element Method

THE NORMAL EQUATIONS

We now need to understand what are the normal equations associated with the linear system,

Ax = b, with Aij = (L̂φi , φj)L2(Ω) and bj = (f , φj)L2(Ω).

The first thing we need to understand is what is AT , in fact AT is neither Hilbert adjoint
of A nor the Banach adjoint seen as the operator A : Vh ⊂ H1

0 (Ω) → H−1(Ω) ⊂ V ′
h.

In fact, AT is an operator itself of the form AT : Vh ⊂ H1
0 (Ω) → H−1(Ω) ⊂ V ′

h which
corresponds to the discretisation of the Hilbert adjoint of L, i.e.

AT
ij = Aji = (L̂φj , φi )L2(Ω) = (φj , L̂∗φi )L2(Ω) = (L̂∗φi , φj)L2(Ω),
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The first thing we need to understand is what is AT , in fact AT is neither Hilbert adjoint
of A nor the Banach adjoint seen as the operator A : Vh ⊂ H1

0 (Ω) → H−1(Ω) ⊂ V ′
h.

In fact, AT is an operator itself of the form AT : Vh ⊂ H1
0 (Ω) → H−1(Ω) ⊂ V ′

h which
corresponds to the discretisation of the Hilbert adjoint of L, i.e.

AT
ij = Aji = (L̂φj , φi )L2(Ω) = (φj , L̂∗φi )L2(Ω) = (L̂∗φi , φj)L2(Ω),
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Applications To The Finite Element Method

THE NORMAL EQUATIONS – PRIMAL DUAL ERROR

If we consider the classical normal equations, i.e. ATAx = ATb.

Primal Dual Error

We notice that there is a primal dual error in the classical formulation of the normal
equations.

Vh ⊂ H1
0 (Ω) H−1 ⊂ V ′

h

A
Vh ⊂ H1

0 (Ω) H−1 ⊂ V ′
h

AT

To make sense of the normal equations we need to consider a Riesz map T : V ′
h → Vh.

Vh ⊂ H1
0 (Ω) H−1 ⊂ V ′

h

A
Vh ⊂ H1

0 (Ω) H−1 ⊂ V ′
h
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Applications To The Finite Element Method

THE NORMAL EQUATIONS

The Riesz map gives rise to a discrete operator T : V ′
h → Vh, which is symmetric and positive

definite. Therefore if we consider the normal equations with respect to the Riesz map, i.e.

ATTAx = ATTb,

we can rewrite them using a Cholesky factorisation of T , i.e. T = CTC .

(CA)T (CA)x = (CA)TCb,

hence the previous normal equation are associated with the linear system CAx = Cb.

� The normal equations are still symmetric and positive definite. Hence we can solve them
using CGNE. The cross-preconditioning idea is still applicable.

� The condition number of the normal equations is the square of the condition number of
the original system.
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Applications To The Finite Element Method

THE NORMAL EQUATIONS – L2-RIESZ MAP

We can consider as Riesz map the L2-Riesz map, i.e.

(Tf , vh)L2(Ω) = ⟨f , vh⟩ for any vh ∈ Vh, f ∈ V ′
h

Using the L2-Riesz map the new normal is
approximating, in the limit ν → 0, the problem: find
u ∈ H1

0 (Ω) such that

(β ⊗ β∇u,∇v)L2(Ω) = (g , v)L2(Ω) for any v ∈ H1
0 (Ω).

ν CGNE Iterations
1 · 10−2 4231
5 · 10−3 3803
2.5 · 10−3 3327
1.25 · 10−3 2419

Table: The CGNE methods were terminated
when the absolute residual was less than 10−5.

Due to the function space involved in the weak form, we chose the wrong Riesz map.

H1
0 (Ω) H−1 ⊂ L2

′ L2 ̸⊂H1
0 (Ω) H−1

T−1

L. Lazzarino, Y. Nakatsukasa, U. Zerbinati Normal Preconditioning Oxford, 5th Dec. ’24 14 / 23



Applications To The Finite Element Method

THE NORMAL EQUATIONS – L2-RIESZ MAP

We can consider as Riesz map the L2-Riesz map, i.e.

(Tf , vh)L2(Ω) = ⟨f , vh⟩ for any vh ∈ Vh, f ∈ V ′
h

Using the L2-Riesz map the new normal is
approximating, in the limit ν → 0, the problem: find
u ∈ H1

0 (Ω) such that

(β ⊗ β∇u,∇v)L2(Ω) = (g , v)L2(Ω) for any v ∈ H1
0 (Ω).

ν CGNE Iterations
1 · 10−2 4231
5 · 10−3 3803
2.5 · 10−3 3327
1.25 · 10−3 2419

Table: The CGNE methods were terminated
when the absolute residual was less than 10−5.

Due to the function space involved in the weak form, we chose the wrong Riesz map.

H1
0 (Ω) H−1 ⊂ L2

′ L2 ̸⊂H1
0 (Ω) H−1

T−1

L. Lazzarino, Y. Nakatsukasa, U. Zerbinati Normal Preconditioning Oxford, 5th Dec. ’24 14 / 23



Applications To The Finite Element Method

THE NORMAL EQUATIONS – L2-RIESZ MAP

We can consider as Riesz map the L2-Riesz map, i.e.

(Tf , vh)L2(Ω) = ⟨f , vh⟩ for any vh ∈ Vh, f ∈ V ′
h

Using the L2-Riesz map the new normal is
approximating, in the limit ν → 0, the problem: find
u ∈ H1

0 (Ω) such that

(β ⊗ β∇u,∇v)L2(Ω) = (g , v)L2(Ω) for any v ∈ H1
0 (Ω).

ν CGNE Iterations
1 · 10−2 4231
5 · 10−3 3803
2.5 · 10−3 3327
1.25 · 10−3 2419

Table: The CGNE methods were terminated
when the absolute residual was less than 10−5.

Due to the function space involved in the weak form, we chose the wrong Riesz map.

H1
0 (Ω) H−1 ⊂ L2

′ L2 ̸⊂H1
0 (Ω) H−1

T−1

L. Lazzarino, Y. Nakatsukasa, U. Zerbinati Normal Preconditioning Oxford, 5th Dec. ’24 14 / 23



Applications To The Finite Element Method

THE NORMAL EQUATIONS – H1-RIESZ MAP

We can consider as Riesz map the H1-Riesz
map, i.e.

(∇Tf ,∇vh)L2(Ω) = ν−1⟨f , vh⟩, ∀vh ∈ Vh, f ∈ V ′
h.

ν 32× 32 64× 64 128× 128

1 · 10−2 2 2 2
5 · 10−3 3 3 3
2.5 · 10−3 3 3 3
1.25 · 10−3 3 3 3

Table: The CGNE methods were terminated when the
absolute residual was less than 10−5.

Using this Riesz map the normal equations ATTAx = ATTb is approximating the problem:
find u ∈ H1

0 (Ω) such that

ν(∇u,∇v)L2(Ω) + ν−1(Π∇βu,Π∇βv)L2(Ω), for any v ∈ H1
0 (Ω).
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Applications To The Finite Element Method

THE NORMAL EQUATIONS – PRECONDITION USING THE MASS MATRIX AND AMG

Find uh ∈ Vh such that ν−1(βuh, βvh)L2(Ω), for any vh ∈ Vh.

ν 32× 32 64× 64 128× 128 256× 256 512× 512

1 · 10−2 9 14 21 24 26
5 · 10−3 13 13 19 28 33
2.5 · 10−3 19 17 17 25 37
1.25 · 10−3 27 24 21 22 33

Table: Comparison of the number of iterations for the CGNE method preconditioned by the inversion
via PETSc GAMG, for different values of ν and different mesh sizes. The wind is fixed to β = (1, 0)
and as right-hand side we consider the function f (x , y) ≡ 1. The CGNE method was terminated when
the absolute residual was less than 10−5.
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Applications To The Finite Element Method

Figure: The discrete solution uh of the advection-diffusion equation (1) for different value of ν at the
finest mesh size 512× 512, together with exp(−|∇ · βuh|2).
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Applications To The Finite Element Method

THE NORMAL EQUATIONS – PRECONDITION USING THE MASS MATRIX AND AMG

Find uh ∈ Vh such that ν−1(βuh, βvh)L2(Ω), for any vh ∈ Vh.

ν 32× 32 64× 64 128× 128 256× 256

1 · 10−2 10 15 20 23
5 · 10−3 11 15 22 30
2.5 · 10−3 17 16 21 32
1.25 · 10−3 26 24 23 30

Table: Comparison of the number of iterations for the CGNE method preconditioned by the inversion
via PETSc GAMG, for different values of ν and different mesh sizes. The wind is fixed to

√
2β = (1, 1)

and as right-hand side we consider the function f (x , y) ≡ 1. The CGNE method was terminated when
the absolute residual was less than 10−5.
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Applications To The Finite Element Method

Figure: The discrete solution uh of the convection-diffusion equation (1), with
√
2β = (1, 1), for

different values of ν at the finest mesh size 512× 512, together with exp(−|∇ · βuh|2).
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Applications To The Finite Element Method

THE NORMAL EQUATIONS – PROJECTED MASS MATRIX AND SSOR

Find uh ∈ Vh such that ν−1(Π∇βuh,Π∇βvh)L2(Ω), for any vh ∈ Vh.

ν 32× 32 64× 64 128× 128

1 · 10−2 14 22 40
5 · 10−3 16 21 33
2.5 · 10−3 22 22 29
1.25 · 10−3 30 30 34

Table: Comparison of the number of iterations for the CGNE method preconditioned by symmetric
successive over-relaxation, for different values of ν and different mesh sizes. The wind is fixed to√
2β = (1, 1) and as right-hand side we consider the function f (x , y) ≡ 1. The CGNE method was

terminated when the absolute residual was less than 10−5.
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Applications To The Finite Element Method

THE NORMAL EQUATIONS – PROJECTED MASS MATRIX AND GMG

Find uh ∈ Vh such that ν−1(Π∇βuh,Π∇βvh)L2(Ω), for any vh ∈ Vh.

ν 32× 32 64× 64 128× 128

1 · 10−2 4 5 8
5 · 10−3 4 5 7
2.5 · 10−3 5 5 7
1.25 · 10−3 7 7 7

Table: Comparison of the number of iterations for the CGNE method preconditioned by geometric
multigird with SOR smoothing, for different values of ν and different mesh sizes. The wind is fixed to√
2β = (1, 1) and as right-hand side we consider the function f (x , y) ≡ 1. The CGNE method was

terminated when the absolute residual was less than 10−5.
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Applications To The Finite Element Method

TAKE AWAY MESSAGE

� The normal equations are a powerful tool to solve linear systems arising from PDEs, for
which we have a very good understanding of convergence.

� The correct notion of a good preconditioner for the normal equations is crucial to
understand how to precondition the normal equations. We propose the notion of cross
preconditioning.

� A careful study of the normal equations can suggest a new PDE to use as preconditioner.
Often these PDEs are simpler to solve than the original ones. We refer to this idea as
normal preconditioning.

� We should reconsider the use of normal equations for solving linear systems arising
from PDEs.
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Applications To The Finite Element Method

FUTURE WORK

� There is an intimate connection between the notion of normal preconditioning and a
method known as discontinuous Petrov-Galerkin. We would like to further explore this
connection and understand the optimisation problem associated with the normal equations
here proposed.

� Explore the notion of normal preconditioning for higher-order finite element
discretisation.

� Apply normal preconditioning to other PDEs such as the Helmholtz equation, using as
Riesz map the T-coercive map. We would also like to study the Oseen equation and C 1

nearly singular problems such as the Helmholtz–Korteweg equation.

� Understand how to efficiently compute the polar decomposition so that we can construct a
good cross preconditioner starting from the normal PDE, for LSQR type methods.
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THANK YOU!
Lorenzo now accepts questions.

Some more comments on the normal equations: With a focus on discretisation of partial
differential equations

L. Lazzarino, Y. Nakatsukasa, Umberto Zerbinati*
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