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CONTINUUM MECHANICS – BALANCE LAWS

The governing equations of continuum mechanics are the conservation are the conservation of
mass, linear momentum, angular momentum.

∂tρ+ div(ρu) = 0,

ρ
(
∂tu + u · ∇u

)
−∇ · σ = ρf ,

ρ
(
∂tη + u · ∇η

)
−∇ · µ− ξ = ρτ ,

where ρ is the density, u is the either the linear momentum, σ is the Cauchy stress tensor, η is
the intrinsic angular momentum, ξ is the antisymmetric part of the Cauchy stress tensor, µ is

the couple stress tensor, f is the body force, and τ is the body torque.

The continuum mechanics governing equations need to be completed by constitutive
relations.
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THE STOKES FLOW

Stokes Flow

A typical constitutive equation for the incompressible flow is the Stokes flow, which is
given by

σ = 2νε(u)− pI ,

where ν is the kinematic viscosity, ε(u) = 1
2 (∇u + (∇u)T ) is the strain rate tensor, and

p is the Lagrange multiplier enforcing the incompressibility condition div u = 0.

The Stokes flow is a linear problem, and it can be written in weak form as follows:

a(u, v) + b(v , p) = (f , v), b(u, q) = 0,

where a(u, v) = 2ν(ε(u), ε(v))L2(Ω) is the bilinear form associated with the viscous term, while
b(v , p) = (∇ · v , p)L2(Ω) is the bilinear form for the incompressibility condition, and (f , v) is
the linear form for the body force.
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PRESSURE ROBUSTNESS – NO FLOW PROBLEM

] J. V. Linke et al., On the divergence constraint in mixed finite element methods for incompressible
flows, SIREV, 2017.

A typical example used to demonstrate the pressure robustness exhibited by the divergence-free
discretisations is the no flow problem, i.e.

f =

(
0

Ra(1− y + 3y2)

)
, u =

(
0
0

)
, p = Ra(y3 − 1

2
y2 + y − 7

12
).

We expect the velocity to be independent of the pressure in the context of a divergence-
free discretisation, contrary to the case of a non-divergence-free discretisation, i.e.
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ELASTICITY – STRESS FORMULATION

Let us begin considering a simpler yet related problem, namely the linear elasticity problem in
stress formulation, i.e.

div σ = f ,
σ = 2µε(u) + λ tr(ε(u))I ,

where f is once again the body force, µ is the shear modulus, λ is the first Lamé parameter.
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ELASTICITY – STRESS FORMULATION

This problem can be written in weak form as follows:

a(σ, τ) + c(τ , ω) + b(u, τ) = ⟨τn, g⟩∂Ω ∀τ ∈ Sh
b(v , σ) = (f , v), ∀v ∈ Vh

c(σ, η) = 0 ∀η ∈ ASh,

a(σ, τ) :=
1

2µ
(σD , τD)L2(Ω) +

1

d(dλ+ 2µ)
(tr(σ), tr(τ))L2(Ω),

b(v , σ) := (div σ, v)L2(Ω), c(σ, η) := (σ, η)L2(Ω)

where the superscript D denotes the deviatoric part of a tensor, i.e. σD = σ − 1
d tr(σ)I and

ASh is the space of antisymmetric tensors.
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PATCH TEST – RIGID BODY MOTION

We begin from the most simple scenario, i.e. we try to induce a large component in the
antisymmetric part of the stress tensor, via rigid body motion.

u = CBnd

(
−y
x

)
, σ =

(
0 0
0 0

)
.

The exact solution are in the discrete spaces [P1(Th)]2 and [P0(Th)]2×2, hence η can be

approximated exactly by a “low-order” finite element approximation.

The only elements in the kernel of the symmetric part of the gradient are the rigid body
motions.
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SYMMETRY CONSTRAINT – RIGID BODY MOTION

] D. N. Arnold, et al., PEERS: a new mixed finite element for plane elasticity, JJIAM, 1984,
C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity
problems, Numer. Math., 1978,

M. Amara and J. M. Thomas, Equilibrium finite elements for the linear elastic problem, Numer. Math.,
1979.
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LIQUID CRYSTAL POLYMER NETWORKS – TRANSVERSE ANISOTROPY

] T. .J. White, Photomechanical Effects in Liquid–Crystalline Polymer Networks and Elastomers, J.
Polymer Science, 2017

R. H. Nochetto et al., Convergent FEM for a Membrane Model of Liquid Crystal Polymer Networks,
SINUM, 2023.

A liquid crystal polymer network (LCNs) is a
material are polymers that exhibit a liquid
crystalline phase, and are crosslinked to form a
network structure, to obtain a material with
unique mechanical properties. The most
prominent example is kevlar.

Transversly Isotropic Material

LCNs exhibit a transverse isotropy in
their mechanical properties, i.e. we can
express the stress tensor as

σ = 2µε(u) + λ(∇ · u)I + n ⊗ n.
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PATCH TEST – TRANSVERSE ANISOTROPY

We here consider the following model problem, we pick

u = −CBnd

2µ


1

3
x3 − 2

3
y3

x2y + xy2 +
1

3
y3 +

1

3
x3

 , n(x , y) = C
1
2

Bnd

(
x

x + y

)
.

There are also non rigid body motions in the kernel of the u 7→ σ(u). Thus the strong
imposition of symmetry becomes important.

U. Zerbinati Angular Preserving FEM FETC, 15th Jan. ’26 10 / 21



SYMMETRY CONSTRAINT – TRANSVERSE ANISOTROPY

] D. N. Arnold, et al., PEERS: a new mixed finite element for plane elasticity, JJIAM, 1984,
C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity
problems, Numer. Math., 1978,

M. Amara and J. M. Thomas, Equilibrium finite elements for the linear elastic problem, Numer. Math.,
1979.
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ARNOLD–FALK–WINTHER ELEMENTS – TRANSVERSE ANISOTROPY

] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, 2013.

We can compute the exact off diagonal entries
of η, i.e.

η
12
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2µ
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LIQUID CRYSTALS – ERICKSEN STRESS TENSOR

] J. L. Ericksen, Conservation laws for liquid
crystals. Transactions of the Society of
Rheology, 1961.

Ericksen Stress Tensor

The Ericksen stress tensor is a symmetric
rank 2 tensor, which is used to model the
stress in liquid crystal materials, i.e.

σ = 2ν · ε(u) + pI + KF · ∇nT∇n.
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ERICKSEN FLUID – STRESS FORMULATION

We consider the following simplified Stokes problem with Ericksen stress tensor, i.e.

1

ν
σD −∇u + ω = KF∇nT∇n,

div σ −∇p = −f ,

σ = σT ,

∇ · u = 0,

where f is once again the body force, ν is the fluid viscosity, and KF is the Frank elastic
constant.
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ERICKSEN FLUID – WEAK FORMULATION

This problem can be written in weak form as follows:

a(σ, τ) + b2(u, τ) = ⟨τn, g⟩∂Ω ∀τ ∈ Sh
b2(v , σ) + b1(v , p) = −(f , v), ∀v ∈ Vh

b1(u, q) = 0, ∀q ∈ Qh

a(σ, τ) :=
1

2µ
(σD , τD)L2(Ω), b1(u, q) := (∇ · u, p)L2(Ω), b2(v , σ) := (div σ, v)L2(Ω)

where Sh, Vh and Qh are appropriate finite element spaces for the stress, velocity and pressure,
respectively.

To enforce the symmetry of the stress tensor, we can use introduce an additional Lagrange
multiplier, i.e.

c(σ, η) := (σ, η)L2(Ω) = 0 ∀η ∈ ASh,

where ASh is the space of antisymmetric tensors.
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PATCH TEST – ERICKSEN FLUID

We here consider the following model problem, we pick

u = Cu

(
−cos(x)cosh(y)
sin(x)sinh(y)

)
, p = Cpsin(x)cosh(y),

n(x , y) = Cn

(
x
y

)
,KF = sin(x)sinh(y).

We pick Cn >> 1 and Cu,Cp such that Cu + Cp + CK = 0, so that σ ≡ 0.

There are also non polynomial in the kernel of the u 7→ σ(u). Thus the strong imposition
of symmetry becomes important.
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ERICKSEN TENSOR - PATCH TEST

We now design a patch test, for the intrinsic angular momentum, i.e.

ρ
(
∂tη + u · ∇η

)
−∇ · µ− ξ = ρτ ,

We pick a very silly couple stress tensor, i.e. µ = ∇η, assume that η vanish at the

boundary and have zero torque, i.e. τ ≡ 0.
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CONSERVATION OF ANGULAR MOMENTUM – ERICKSEN TENSOR

] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, 2013.
D. N. Arnold, and R. Winther, Mixed finite elements for elasticity, Num. Math. 2002.
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CONSERVATION OF ANGULAR MOMENTUM – ERICKSEN TENSOR

] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, 2013.
D. N. Arnold, and R. Winther, Mixed finite elements for elasticity, Num. Math. 2002.
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THANK YOU!

On the symmetry constraint and angular momentum conservation in mixed stress formulation

Pablo Brubeck∗, Charles Parker, II∗, Umberto Zerbinati∗



SOME WEAKLY SYMMETRIC MIXED FINITE ELEMENTS

PEERS

Sh = RT k(Th)3r , Vh = Pk−1(Th) ∩ L2(Ω), Wh = Pk(Th) ∩ H1(Ω).

Arnold–Falk–Winther

Sh = BDMk(Th)3r , Vh = Pk−1(Th) ∩ L2(Ω), Wh = Pk−1(Th) ∩ L2(Ω).

Amara–Thomas

Sh = BDFMk(Th)3r , Vh = Pk−1(Th) ∩ L2(Ω), Wh = Pk−1(Th) ∩ L2(Ω).

When k = 1, notice that BDFM1(Th)3r = BDM1(Th)3r , thus this element is equivalent
to the Arnold–Falk–Winther element of order 1.
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SOME STRONGLY SYMMETRIC MIXED FINITE ELEMENTS

Arnold–Winther

Sh = AWk(Th), Vh = Pk−2(Th)∩L2(Ω).

Johnson–Mercier

Sh = JMk(Th), Vh = Pk−1(Th)∩L2(Ω).

Figure: Arnold–Winther element of order k = 3 on
a triangular mesh.

Figure: The complex leading to the
Johnson–Mercier element of order k = 1 on a
Alfeld mesh.
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SYMMETRY CONSTRAINT – A PRIORI ERROR ESTIMATE

When reduced symmetry is imposed, the error estimate for the discrete scheme is fully coupled
and take the form

∥σ − σ
h
∥L2(Ω) + µβh

[
∥u − uh∥L2(Ω) + ∥η − η

h
∥L2(Ω)

]
≤ Cβ−1

h inf
τh∈Sh

∥σ − τh∥L2(Ω)

+ Cµ inf
vh∈Vh

∥u − vh∥L2(Ω)

+ Cµ inf
ηh∈ASh

∥η − ηh∥L2(Ω).

Strong Symmetry

If we impose the symmetry constraint and ∇ · Sh = Vh, we obtain a decoupled error
estimate of the form

∥σ − σ
h
∥L2(Ω) ≤ Cβ−1

h inf
τh∈Sh

∥σ − τ
h
∥L2(Ω).
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