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CONTINUUM MECHANICS - BALANCE LAWS

The governing equations of continuum mechanics are the conservation are the conservation of

mass, linear momentum, angular momentum.
p— 07

Orp + div(pu)

p(&u—ku-Vu) -V .g=pf,

p(0m+u-Vn)-V-p-€=pr,

where p is the density, u is the either the linear momentum, ¢ is the Cauchy stress tensor, 7 is
the intrinsic angular momentum, £ is the antisymmetric part of the Cauchy stress tensor, i is

the couple stress tensor, f is the body force, and 7 is the body torque.
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CONTINUUM MECHANICS - BALANCE LAWS

The governing equations of continuum mechanics are the conservation are the conservation of

mass, linear momentum, angular momentum.
p— 07

Orp + div(pu)
pf,

p(c’)fu—i—u-Vu)—V-g
p(0m+u-Vn)-V-p-€=pr,

where p is the density, u is the either the linear momentum, ¢ is the Cauchy stress tensor, 7 is
the intrinsic angular momentum, £ is the antisymmetric part of the Cauchy stress tensor, i is

the couple stress tensor, f is the body force, and 7 is the body torque.

The continuum mechanics governing equations need to be completed by constitutive

relations.
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THE STOKES FLOW

Stokes Flow

A typical constitutive equation for the incompressible flow is the Stokes flow, which is
given by
= 2vg(u) — pl,

g
where v is the kinematic viscosity, (u) = 3(Vu + (Vu)T) is the strain rate tensor, and
p is the Lagrange multiplier enforcing the incompressibility condition divu = 0.
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THE STOKES FLOW

Stokes Flow

A typical constitutive equation for the incompressible flow is the Stokes flow, which is
given by
= 2vg(u) — pl,

g
where v is the kinematic viscosity, (u) = 3(Vu + (Vu)T) is the strain rate tensor, and
p is the Lagrange multiplier enforcing the incompressibility condition divu = 0.

The Stokes flow is a linear problem, and it can be written in weak form as follows:
a(u,v) + b(v,p) = (f,v),  b(u,q)=0,

where a(u, v) = 2v(g(u),£(v))2(q) is the bilinear form associated with the viscous term, while
b(v,p) = (V- v,p)i2q) is the bilinear form for the incompressibility condition, and (f, v) is
the linear form for the body force.
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PRESSURE ROBUSTNESS - NO FLOW PROBLEM

. J. V. Linke et al., On the divergence constraint in mixed finite element methods for incompressible
flows, SIREV, 2017.

A typical example used to demonstrate the pressure robustness exhibited by the divergence-free
discretisations is the no flow problem, i.e.

_ 0 (0 _ 3 1, 7
f—<Ra(1_y+3yz))7 U—<0>, p=Ra(y’ =2y +y—35)

We expect the velocity to be independent of the pressure in the context of a divergence-
free discretisation, contrary to the case of a non-divergence-free discretisation, i.e.
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PRESSURE ROBUSTNESS - NO FLOW PROBLEM

. J. V. Linke et al., On the divergence constraint in mixed finite element methods for incompressible
flows, SIREV, 2017.
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PRESSURE ROBUSTNESS — NO FLOW PROBLEM

J. V. Linke et al.,

flows, SIREV, 2017.
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ELASTICITY — STRESS FORMULATION

Let us begin considering a simpler yet related problem, namely the linear elasticity problem in
stress formulation, i.e.

dive = f,

2pg(u) + Atr(g(u))L,

[SINS!
Il

where f is once again the body force, u is the shear modulus, A is the first Lamé parameter.
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ELASTICITY — STRESS FORMULATION

This problem can be written in weak form as follows:

a(e, 1) + c(z,w) + b(u,7) = (zn.gloa VL €Sy
b(v,ag) = (f,v), Yv € Vy,
c(e,n) =0 Vn € ASy,

_ 1 b5 b 1
alg,z) = Z(g I )iz + m(tr(g):t"(l))ﬂ(ﬁ)v

b(v,g) = (divg,v)ix@),  clz;n) = (2 1)@

where the superscript D denotes the deviatoric part of a tensor, i.e. ¢ = ¢ — 1 tr(¢)/ and
ASy, is the space of antisymmetric tensors.
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PATCH TEST - RIGID BODY MOTION

We begin from the most simple scenario, i.e. we try to induce a large component in the
antisymmetric part of the stress tensor, via rigid body motion.

= 0 0
U:CBnd<Xy>7 0':<0 0)
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PATCH TEST - RIGID BODY MOTION

We

begin from the most simple scenario, i.e. we try to induce a large component in the

antisymmetric part of the stress tensor, via rigid body motion.

= 0 0
U:CBnd<Xy>? Uz(o 0)

The exact solution are in the discrete spaces [P1(74)]* and [Po(75)]?*?, hence 7 can be
approximated exactly by a “low-order” finite element approximation. B
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PATCH TEST - RIGID BODY MOTION

We begin from the most simple scenario, i.e. we try to induce a large component in the
antisymmetric part of the stress tensor, via rigid body motion.

— 0 0
U:CBnd<Xy>7 0':<0 0)

The exact solution are in the discrete spaces [P1(74)]* and [Po(75)]?*?, hence 7 can be
approximated exactly by a “low-order” finite element approximation.

The only elements in the kernel of the symmetric part of the gradient are the rigid body
motions.
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SYMMETRY CONSTRAINT - RIGID BODY MOTION

. D. N. Arnold, et al., PEERS: a new mixed finite element for plane elasticity, JJIAM, 1984,
C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity
problems, Numer. Math., 1978,
M. Amara and J. M. Thomas, Equilibrium finite elements for the linear elastic problem, Numer. Math.,

1979.
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LIQUID CRYSTAL POLYMER NETWORKS — TRANSVERSE ANISOTROPY m

. T. .J. White, Photomechanical Effects in Liquid—Crystalline Polymer Networks and Elastomers, J.
Polymer Science, 2017
R. H. Nochetto et al., Convergent FEM for a Membrane Model of Liquid Crystal Polymer Networks,
SINUM, 2023.

Transversly Isotropic Material
A liquid crystal polymer network (LCNs) is a

material are that exhibit a liquid LCNs exhibit a transverse isotropy in
crystalline phase, and are crosslinked to form a their mechanical properties, i.e. we can
network structure, to obtain a material with express the stress tensor as

unique mechanical properties. The most
prominent example is kevlar. a=2us(u) + XV -u)l+n®n.
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PATCH TEST - TRANSVERSE ANISOTROPY

We

here consider the following model problem, we pick

1, 2

3
x> —Zy
G 1
g Cond 3 3 7 n(X,y)ZCé,,d< x )
2p 2 2,13, 13 Xty
Xy + Xy —|—§y +§X

There are also non rigid body motions in the kernel of the u — g(u). Thus the strong
imposition of symmetry becomes important.
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ARNOLD-FALK-WINTHER ELEMENTS — TRANSVERSE ANISOTROPY

. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, 2013.
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LIQUID CRYSTALS — ERICKSEN STRESS TENSOR

. J. L. Ericksen, Conservation laws for liquid
crystals. Transactions of the Society of
Rheology, 1961.
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LIQUID CRYSTALS — ERICKSEN STRESS TENSOR

. J. L. Ericksen, Conservation laws for liquid
crystals. Transactions of the Society of
Rheology, 1961.

Ericksen Stress Tensor

The Ericksen stress tensor is a symmetric
rank 2 tensor, which is used to model the
stress in liquid crystal materials, i.e.

g=2v-g(u)+pl+Ke-Vn'Vn.
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ERICKSEN FLUID - STRESS FORMULATION

We consider the following simplified Stokes problem with Ericksen stress tensor, i.e.

ZoP —Vu+w=KeVn'Vn,
<

where f is once again the body force, v is the fluid viscosity, and K is the Frank elastic
constant.
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ERICKSEN FLUID - WEAK FORMULATION

This problem can be written in weak form as follows:

a(g, 1) + ba(u,z) = (zn, 8)aa V1 € Sh
bo(v,0) + bi(v,p) = —(F,v), Vv eV,
. bi(u,q) =0, Vg € Qp
ale, 1) = TM(QD@D)LZ(Q), bi(u,q) = (V- u,p)iz),  bv,g) = (divg,v)r(q

where Sy, Vi, and Qp are appropriate finite element spaces for the stress, velocity and pressure,
respectively.
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|
ERICKSEN FLUID - WEAK FORMULATION

This problem can be written in weak form as follows:

a(g, 1) + ba(u,z) = (zn, 8)aa V1 € Sh
bo(v,a) + bi(v,p) = —(f,v), Yv € Vy
. bi(u,q) =0, Vq € Qn
a(g.7) = TM(QD@D)LZ(Q), bi(u,q) = (V-u,p)a),  b2(v,g) = (divg, v)i2q)

where Sy, Vi, and Qp are appropriate finite element spaces for the stress, velocity and pressure,
respectively.

To enforce the symmetry of the stress tensor, we can use introduce an additional Lagrange
multiplier, i.e.
C(g, 2) = (272)3(9) =0 VQ € ASh,

where AS,, is the space of antisymmetric tensors.
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PATCH TEST - ERICKSEN FLUID

We here consider the following model problem, we pick

B —cos(x)cosh(y) .
u=C, ( sin(x)sinh(y) > : p = Cpsin(x)cosh(y),

n(x,y) = C, (;) . K¢ = sin(x)sinh(y).

We pick C, >> 1 and C,, C, such that C, + C, + Cx =0, so that ¢ = 0.

There are also non polynomial in the kernel of the u — g(u). Thus the strong imposition
of symmetry becomes important.
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ERICKSEN TENSOR - PATCH TEST

We now design a patch test, for the intrinsic angular momentum, i.e.

p(am+u-Vn)fV-gf€:pT»
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ERICKSEN TENSOR - PATCH TEST

We

now design a patch test, for the intrinsic angular momentum, i.e.

p(am+u-Vn)—V-g—€:pT,

We pick a very silly couple stress tensor, i.e. pu = Vn, assume that n vanish at the

boundary and have zero torque, i.e. 7 =0.
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CONSERVATION OF ANGULAR MOMENTUM - ERICKSEN TENSOR

. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, 2013.
D. N. Arnold, and R. Winther, Mixed finite elements for elasticity, Num. Math. 2002.
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THANK YOQOU!

On the symmetry constraint and angular momentum conservation in mixed stress formulation

PABLO BRUBECK*, CHARLES PARKER, II*, UMBERTO ZERBINATI*
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SOME

WEAKLY SYMMETRIC MIXED FINITE ELEMENTS

Sh=RT(Tn)*, V=P 1(Tn)NL%Q), W, =Pu(Ts) N HYQ).

7
\.

Arnold—Falk—Winther

Sh = BDM(Tn)*, V=P 1o(T)NLA(Q),  W,="P1(Th) N LAQ).

Amara—Thomas

| \

Sk = BDFM(Th)*,  Vi=Pia(To) N L3(Q),  Wu="Pr1(T5) N L3(Q).

When k = 1, notice that BDF M (T5)3 = BDM;:(T)*", thus this element is equivalent
to the Arnold—Falk—Winther element of order 1.
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SOME STRONGLY SYMMETRIC MIXED FINITE ELEMENTS

Arnold—Winther

Sh = AW (Th),

Vi = Pk_z(ﬁ)ﬁL2(Q).

Johnson—Mercier

Sh = TMi(Th),

Vi = 'Pk71(77,)ﬂL2(Q).

AYRN

Figure: Arnold—Winther element of order k = 3 on
a triangular mesh.

Figure: The complex leading to the
Johnson—Mercier element of order k =1 on a
Alfeld mesh.
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SYMMETRY CONSTRAINT - A PRIORI ERROR ESTIMATE

When reduced symmetry is imposed, the error estimate for the discrete scheme is fully coupled
and take the form

lg = gulliz@) + 1Bn |l = unllz@) + 11— 1, 2@ | < Cﬂ;:jgghﬂg — Thll2()

Cu inf —
+ MthQVhHU vill2(@)

Cp inf |n— .
- MnhIEnASh”Q T]h”LZ(Q)
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SYMMETRY CONSTRAINT - A PRIORI ERROR ESTIMATE

When reduced symmetry is imposed, the error estimate for the discrete scheme is fully coupled
and take the form

lg = gulliz@) + 1Bn |l = unllz@) + 11— 1, 2@ | < Cﬂﬁlmig‘;hﬂg — Thll2()

Cu inf —
5 MVhIQVhHU vhlli2(Q)

+ Cp inf |[n —1 .
MnhGASh”Q T/h”/_Z(Q)

Strong Symmetry

If we impose the symmetry constraint and V - Sy = V;, we obtain a decoupled error
estimate of the form

=1 =
lz = gplliz@ < €8y~ inf g — z,llix(@)-
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