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The molecules

Our ultimate goal is to understand properties of special molecules
such as MBBA and 5CB, which are well known to establish a liquid
crystal mesophase under appropriate conditions.

▶ Molecules can be regarded as slender
bodies.

▶ Molecules are achiral, i.e. they can be
superimposed with their mirror images.

▶ Molecules are neutrally charged.
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The nematic ordering

Onsager first related the ability of certain colloidal particles to have
a partial ordering before they freeze (hence retaining the ability to
flow) to the particle geometry. The greater the elongation of the
molecule, the more likely the colloidal will form a nematic ordering.

▶ There is an enthalpic drive, i.e. the
van der Waals forces favor alignment.

▶ There is an entropic drive, i.e. aligned
elongated molecules are more loosely
packed, i.e. we have fewer constraints
on the velocity and position.
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Kinetic Theory
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Kinetic Theory of Non-Spherical Molecules

▶ In 1956 derived the first kinetic theory for
non-spherical molecules.

▶ In 1963 together with J.S. Dahler, used the
BBGKY formalism to derive a kinetic theory
for non-spherical molecules.

▶ Fostered a kinetic theory “school” who was
very active in development of a theory for
hard convex body fluids.

Charles Francis Curtiss,
1921–2007
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Curtiss collision operator

In his seminal paper, Curtiss proposed a kinetic theory for
spherocylindrical molecules as an idealisation of a polyatomic gas.

▶ He considered a larger configuration space
made by position, velocity, the Euler
angles for describing the orientation of
each molecule, and the angular velocity
with respect to a fixed coordinate system.

▶ Molecules would interact by excluded
volume, which give rise to short range
interactions, hence the nematic
ordering.
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This led Curtiss to formulate the following Boltzmann type
equation,

∂t f +∇r · (v f ) +∇α · (α̇f ) = C [f , f ] (1)

where f (r , v ,α, ς) is the probability of having a particle in the
(r , v ,α, ς) spot of the configuration space, normalised by 1

n .

C [f , f ] =

ˆˆˆˆ
(f

′
1 f

′ − f1f )(k · g)S(k)dkdv1dα1dς1

with S(k)dk being the surface element of the excluded volume
and g = v1 − v +ω1 × r1 −ω × r . Here without loss of generality
the equation is stated in absence of external force and torque.
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Collision invariants

It is possible to prove that the following quantities are collision
invariants for C [f , f ], i.e.

ˆˆˆ
ψ(i)C [f , f ]dv1dς1dα1 = 0.

▶ ψ(1) = 1, the number of particles in the system;

▶ ψ(2) = mv , the linear momentum;

▶ ψ(3) = I1 · ω + r ×mv , the angular momentum;

▶ ψ(4) = 1
2mv · v + 1

2ω · I · ω, the kinetic energy of the
system.

1The inertia tensor for the spherocylinder we are considering.
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The hydrodynamic equations – notation

We first introduce the number density, i.e.

n(r) =
ˆˆˆ

f (r , v ,α, ς)dvdαdς.

Then we can give a meaning to the following chevrons, i.e.

⟨⟨·⟩⟩(r) := 1

n(r)

ˆˆˆ
· f (r , v ,α, ς)dvdαdς.

Using this notation we can define macroscopic stream velocity
and macroscopic stream angular velocity respectively as:

v0 := ⟨⟨v⟩⟩, ω0 := ⟨⟨ω⟩⟩.
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The Hydrodynamic Equations – Curtiss Balance Laws

Testing (1) against the first two collision invariants and
integrating, Curtiss obtained the following balance laws:

∂tρ+∇r · (ρv0) = 0,

ρ
[
∂tv0 + (∇rv0)v0

]
+∇r · (ρP) = 0,

where ρ is the density defined as ρ(r) = mn(r) and P is the
pressure tensor defined as P := ⟨⟨V ⊗ V ⟩⟩, with V being the
peculiar velocity V := v − v0.
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The hydrodynamic equations – surprise balance laws

For the third collision invariant we took a different route than
Curtiss, which led to the following balance law

ρ
[
∂tη + (∇rη)v0

]
+∇r · (ρN) = ξ,

where η is the macroscopic intrinsic angular momentum
defined as η(r) := ⟨⟨I · ω⟩⟩ and N is the couple tensor defined as
N := ⟨⟨V ⊗ (Iω)⟩⟩. Here ξl is defined in tensor notation as
⟨⟨mn(εlkivivk)el⟩⟩ and we proved that ξ vanishes.
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Maxwell–Boltzmann distribution

Curtiss gives an expression for the Maxwell–Boltzmann distribution,
i.e. the distribution f (0) such that C [f (0), f (0)] vanishes:

f (0)(v ,ω) =
n sin(α2)Q´
Q sin(α2)dα

m
3
2

(2π⟨⟨θ⟩⟩)3
(Γ)

1
2 exp

[
−m

|V |
2⟨⟨θ⟩⟩

−Ω · I ·Ω
2⟨⟨θ⟩⟩

]
,

where the peculiar angular velocity defined as Ω := ω − ω0,
Γ =

∏3
i=1 Γi , Γi are the moments of inertia of the spherocylinder

we are considering and Q := exp
[
ω0·I·ω0

2θ

]
.

Notice in particular that we assumed ω0 is the kinetic temperature
of the system measured in energy units.
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Novel Momentum Closure
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Momentum closure around the equilibrium

Now we can use the Maxwell–Boltzmann distribution to compute
an approximation of the pressure tensor near the equilibrium, i.e.

P(0) =
Γ

3m
⟨⟨θ⟩⟩Id .

[
∂tv0 + (∇rv0)v0

]
= −1

ρ
∇p,

Isotropicity

Unfortunately the same procedure results in a vanishing N(0).
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Noether’s Theorem and Momentum Coupling

Let us consider the equation for the angular momentum, and
observe that under the assumption N(0) = 0 it reads

η̇ = ξ = 0.

In particular, this is a consequence of Noether’s theorem since
when N(0) = 0 we have a rotationally invariant Lagrangian.

Isotropicity

Near the thermal equilibrium is the fluid isotropic? No!
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The nematic ordering and the inertia tensor

We know that for a slender body the inertia tensor can be
decomposed as,

I = λ1(I − ν ⊗ ν) +O(ε)

where ε = ( ra)
2. Furthermore, the macroscopic kinetic energy can

be computed as

m
1

2
|v0|2 +

1

2
ω0 · Iω0 =

1

2
m|v0|2 +

λ1
2
|ν̇|2 +O(ε),

as ε→ 0 we retrieve the same energy that is the starting point for
Ericksen theory of anisotropic fluids.
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Balance laws for kinetic temperature

We need another way to formulate the constitutive relation for
the couple tensor. We begin by observing that from ψ(4) we get
the following balance law:

ψ̇0+∇rv0 : (ρP)+∇rω0 : (ρN)−∇·
[
PTv0+NTω0

]
+∇r ·Q = 0

where ψ0 = ⟨⟨θ⟩⟩, Q = 1
2⟨⟨V (m|V |2 +Ω · IΩ)⟩⟩, and

θ =
m

2
V · V +

1

2
Ω · I ·Ω.

This is a kinetic derivation of Leslie’s rate of work
hypothesis.
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The Oseen-Frank stored energy

“Whenever possible, substitute constructions out of known entities
for inferences to unknown entities.” – B. Russell

Making use of the fact that ν̇ = ω × ν = ∂tν(∇ν)v we can
rewrite part of the stored energy as

ψOF (ν,∇ν) =
1

2
Ω · IΩ =

λ1
2
tr
[
∇νTP(0)∇ν

]
.

Using P(0) we get a stored energy functional very similar to the
Oseen-Frank energy

ψOF = p
λ1
2
tr
[
∇νT∇ν

]
.
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Noll–Coleman procedure

Since we are happy with our pressure tensor, we make the
following ansatz

ψ = ψ(ν,∇ν)

where ν is the nematic director. Expanding the total derivative
and using the Ericksen identity we get the following expression in
tensor notation

ψ̇ = εiqp

[
(νq

∂ψ

∂(νp)
+ ∂k(νq)

∂ψ

∂(∂kνp)
)ω0

i + νq
∂ψ

∂(∂kνp)
∂kω

0
i

]
− ∂ψ

∂(∂kνp)
∂q(νp)∂(v

0
q )
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Noll–Coleman procedure

Substituting this expression in the Theorem of power expanded and
considering thermodynamic processes for which the exact
divergences disappear, we get:[

Pij +
∂ψ

∂(∂jνp)
∂i (νp)

]
∂j(νi ) +

[
Nij − εiqpνq

∂ψ

∂(∂jνp)

]
∂j(ω

0
i )[

Ppq −
∂ψ

∂(∂pνk)∂q(νk)

]
εiqpω

0
i ≥ 0.

Since the above expression must hold for all thermodynamic
processes for which the exact divergences disappear, we get the
following constitutive relations:

P = ∇νT ∂ψ

∂(∇ν)
+P(0), Nij = εiqpνq

∂ψ

∂(∂jνp)
= ν × ∂ψ

∂(∇ν)
.
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Compressible Leslie–Ericksen equations

This leads to the following set of equations, which can be seen as a
generalisation of the Leslie–Ericksen that take into account the
compressibility of the fluid:

∂tρ+∇r · (ρv0) = 0,

ρ
[
∂tv0 + (∇rv0)v0

]
+∇r ·

(
pK I + pK

λ1
2
∇rν

T∇rν
)
= 0,

ρ
[
∂tν + (∇rν)v0

]
+∇r ·

(
pK
λ1
2
∇rν

)
= τν,

ρ
[
∂tψ0 +∇rψ0 · v0

]
+

(
pK I + pK

λ1
2
∇rν

T∇rν
)
: ∇rv0 = 0.
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Static problem
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Compressible Oseen–Frank energy

We will now consider the equation for the director ν in the static
regime, i.e. ν̇ = 0, i.e.

∇r ·
(
pK
λ1
2
∇rν

)
= τν.

In particular, this equation can be seen as Euler–Lagrange of for
the minimisation of the compressible Oseen–Frank energy, i.e.

ν = argmin
η∈V (S, S2)

I [∇rη] =
1

2

ˆ
S
Φ(∇η) dr =

1

2

ˆ
S
λ1p|∇rη|2 dr .

U. Zerbinati Kinetic Theory Approach to Liquid Crystals 23



Compressible Oseen–Frank energy

We will now consider the equation for the director ν in the static
regime, i.e. ν̇ = 0, i.e.

∇r ·
(
pK
λ1
2
∇rν

)
= τν.

In particular, this equation can be seen as Euler–Lagrange of for
the minimisation of the compressible Oseen–Frank energy, i.e.

ν = argmin
η∈V (S, S2)

I [∇rη] =
1

2

ˆ
S
Φ(∇η) dr =

1

2

ˆ
S
λ1p|∇rη|2 dr .

U. Zerbinati Kinetic Theory Approach to Liquid Crystals 23



Euler–Lagrange equations

We know that because ν is a minimizer the first variation of the
energy must vanish, i.e.

d

dε
I [∇νε] =

d

dε

1

2

ˆ
S
λ1p|∇rνε|2 dr =

ˆ
S
λ1p∇rνε·∇r

(
d

dε
νε

)
dr .

We compute , d
dε νε, i.e.

d

dε
νε

∣∣∣∣
ε=0

= (I − ν ⊗ ν)
∼
ν, yielding the

following Euler–Lagrange equations in weak form

ˆ
S
λ1∇r · (p∇rν) (I − ν ⊗ ν)

∼
ν dr = 0.

λ1∇r · (p∇rν) = τν in S. (1)
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The S2 constraint and the harmonic maps

We can think of τ : S → R as a Lagrange multiplier that
enforces the constraint ν ∈ S2.

τ = ν · ∇r · (p∇rν)

= ν ·
[
∇rν

T∇rp + p∆rν
]
= ν ·

[
∇rν

T∇rp − p|∇rν|2
]
,

Harmonic maps

Substituting this expression in (1) we get that ν mush be an
harmonic map from S to S2, i.e.

λ1p
(
∆rν + |∇rν|2ν

)
= 0,

since the pressure p is positive.
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Liquid crystal defects: the hedgehog

An intersting example of a universal solution is
the hedgehog solution, i.e.

ν̂ : S → S2 r 7→ r
|r |
.

The hedgehog map is the only admissible class of solution to the
weak formulation of the harmonic map equation in W 1,2(S).

I [∇r ν̂]=
1

2

ˆ
BR(0)
λ1p|∇r ν̂|2 dr =

λ1
2
π∥p∥L∞(S)

=λ1∥p∥L∞(S)

ˆ R

0
s2

2

s2
ds=2πλ1∥p∥L∞(S)R.
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Liquid crystal defects: the two-dimensional hedgehog

Another extremely interesting universal solution to the harmonic
map equation is the two-dimensional hedgehog, i.e.

ν : S → S2 r 7→
(
R−1r1 R−1r2 0

)
, R :=

√
r21 + r22 .

Line defects

Notice that the two-dimensional hedgehog is a vector field
orthogonal to a family of cylinders, and it presents a line
singularity passing through the origin. Line singularities are not
admissible in W1,2(S,S2).
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Liquid crystal defects: the two–dimensional hedgehog

The two–dimensional hedgehog is a universal solution and if we
compute the energy of the two-dimensional hedgehog on a cylinder
S of radius R and height L we obtain

I [∇rν] =
λ1
2

ˆ
S
p|∇rν|2 dr = λ1πL

ˆ R

0
p s · 2

s2
ds,

hence choosing the pressure field p as p(r) =
√

r21 + r22 we obtain

I [∇rν] = 2πλ1L <∞.
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Conclusions

▶ Using a Noll–Coleman argument for the closure of the
momentum hierarchy allows us to retrieve the Ericksen stress
tensor.

▶ From the kinetic theory of spherocylindrical molecules, we
derived a compressible and thermally coupled model for the
flow of fluids with a nematic order.

▶ From the kinetic theory of spherocylindrical molecules, we can
only derive the poor–man Oseen–Frank energy.

▶ We have given a new physical meaning to J. L. Ericksen’s
variable degree of orientation;
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Dreaming of the future

▶ Use L. Ambrosio works on the regularity of the minimisers of
the Ericksen’s energy with variable degree of orientation to
prove the existence of minimisers for the compressible
Oseen–Frank energy even when the pressure field is not fixed;

▶ Derive from a kinetic theory of spherocylindrical molecules,
Virga’s energy functional for nematic Korteweg fluids;

▶ Interpret the smectic energy functional within the
framework here proposed;

▶ Study numerically the equations derived in this work, focusing
on C 1 conforming FEM, VEM and lightning-VEM.
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