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The Molecules

Our ultimate goal is to understand properties of special molecules
such as MBBA and 5CB, which are well known to establish a liquid
crystal mesophase under appropriate conditions.

▶ Molecules can be regarded as slender
bodies.

▶ Molecules are achiral, i.e. they can be
superimposed with their mirror images.

▶ Molecules are neutrally charged.
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The nematic ordering

Onsager first relate the ability of certain colloidal particles to have
a partial ordering before they freeze (hence retaining liquids ability
to flow) to the particle gemetry. The greater the elongation of the
molecule the more likely the colloidal will form a nematic ordering.

▶ There is an enthalpic drive, i.e. the
van der Waals forces favor alignement.

▶ There is an entropic drive, i.e.
aligned elongated molecules are more
loosely packed, i.e. we have less
constraint on the velocity and position.
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Curtiss collision operator

In his seminal paper, Curtiss [Cur56] proposed a kinetic theory for
spherocylindrical molecules as an idealisation of a polyatomic gas.

▶ He considered a larger configuration space
made by position, velocity, the Euler
angles for describing the orientation of
each molecule, and the angular velocity
with respect to a fixed coordinate system.

▶ Molecules would interact by excluded
volume, which give rise to short range
interactions, hence the nematic
ordering.
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This led Curtiss to formulate the following Boltzmann type
equation,

∂t f +∇r · (v f ) +∇α · (α̇f ) = C [f , f ] (1)

where f (r , v ,α, ς) is the usual first reduced distribution function
and C [f , f ] is the collision operator defined as

C [f , f ] = −
∫∫∫∫

(f
′
1 f

′ − f1f )(k · g)S(k)dkdv1dα1dς1

with S(k)dk being the surface element of the excluded volume
and g = v − v1. Here without loss of generality the equation is
stated in absence of external force and torque.
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Collision invariants

It is possible to prove that the following quantities are collision
invariants for C [f , f ], i.e.∫∫∫

ψ(i)C [f , f ]dv1dω1dα1 = 0.

▶ ψ(1) = 1, the number of particles in the system;

▶ ψ(2) = mv , the linear momentum;

▶ ψ(3) = I1 · ω + r ×mv , the angular momentum;

▶ ψ(4) = 1
2mv · v + 1

2ω · I · ω, the kinetic energy of the
system.

1The inertia tensor for the spherocylinder we are considering.
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The hydrodynamic equations – notation

We first introduce the number density, i.e.

n(r) =
∫∫∫

f (r , v ,α,ω)dvdαdω.

Then we can give a meaning to the following chevrons, i.e.

⟨⟨·⟩⟩(r) := 1

n(r)

∫∫∫
· f (r , v ,α,ω)dvdαdω.

Using this notation we can define macroscopic stream velocity
and macroscopic stream angular velocity respectively as:

v0 := ⟨⟨v⟩⟩, ω0 := ⟨⟨ω⟩⟩.
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The Hydrodynamic Equations – Curtiss Balance Laws

Testing (1) against the first two collision invariants and
integrating, Curtiss obtained the following balance laws:

∂tρ+∇r · (ρv0) = 0,

ρ
[
∂tv0 + (∇rv0)v0

]
+∇r · (ρP) = 0,

where ρ is the density defined as ρ(r) = mn(r) and P is the
pressure tensor defined as P := ⟨⟨V ⊗ V ⟩⟩, with V being the
peculiar velocity V := v − v0.
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The hydrodynamic equations – surprise balance laws

For the third collision invariant we took a different route than
Curtiss, which led to the following balance law

ρ
[
∂tη + (∇rη)v0

]
+∇r · (ρN) = ξ, (2)

where η is the macroscopic intrinsic angular momentum
defined as η(r) := ⟨⟨I · ω⟩⟩ and N is the couple tensor defined as
N := ⟨⟨V ⊗ (Iω)⟩⟩. Here ξl is defined in tensor notation as
⟨⟨mn(εlkivivk)el⟩⟩ and we proved that ξ vanishes (as stated by
Curtiss in [Cur56]) in this particular setting.
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Maxwell–Boltzmann distribution

In [Cur56] Curtiss gives an expression for the Maxwell–Boltzmann
distribution, i.e. the distribution f (0) such that C [f (0), f (0)]
vanishes:

f (0)(v ,ω) =
n sin(α2)Q∫
Q sin(α2)dα

m
3
2

(2π⟨⟨θ⟩⟩)3
(Γ)

1
2 exp

[
−m

|V |
2⟨⟨θ⟩⟩

−Ω · I ·Ω
2⟨⟨θ⟩⟩

]
,

where the peculiar angular velocity defined as Ω := ω − ω0,
Γ =

∏3
i=1 Γi , Γi are the moments of inertia of the spherocylinder

we are considering and Q := exp
[
ω0·I·ω0

2θ

]
.

Notice in particular that we assumed ω0 and the peculiar kinetic
energy θ = m

2 V · V + 1
2Ω · I ·Ω are fixed.
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Equipartition of energy theorem

We have defined the peculiar kinetic energy as

θ =
m

2
V · V +

1

2
Ω · I ·Ω

We can relate to the kinetic temperature T making use of the
Boltzmann constant,

θ = 3kBT .

Such a relation comes from the equipartition of energy theorem
since we have six degree of freedom in the kinetic energy each of
which appears with a quadratic dependence. From this relation it
follows that the heat capacity of a polyatomic gas constituted by
N particles is 3NKB .
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Momentum closure around the equilibrium

Now we can use the Maxwell–Boltzmann distribution to compute
an approximation of the pressure tensor near the equilibrium, i.e.

P(0) =
Γ

3m
θId .

We can define the pressure as p = Γ
3mρθ and rewrite,[

∂tv0 + (∇rv0)v0
]
= −1

ρ
∇p,

Unfortunately the same procedure results in a vanishing N(0).
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Noether’s Theorem and Momentum Coupling

Let us consider the equation for the angular momentum under, and
observe that under the assumption N(0) = 0 it reads

η̇ = ξ = 0.

In particular, this is a consequence of Noether’s theorem since
when N(0) = 0 we have a rotationally invariant Lagrangian.

Near the thermal equilibrium is the fluid isotropic ? No !

UniCT Nematic Polyatomic Gas 13



Balance laws for kinetic temperature

We need another way to formulate the constitutive relation for
the couple tensor. We begin by observing that from ψ(4) we get
the following balance law:

ψ̇0+∇rv0 : (ρP)+∇rω0 : (ρN)−∇·
[
PTv0+NTω0

]
+∇r ·Q = 0

where ψ0 = ⟨⟨θ⟩⟩ and Q = 1
2⟨⟨V (m|V |2 +Ω · IΩ)⟩⟩.

Without loss of generality we assume that the fluids motion is
purely exothermic and drop the exact divergence to obtain the
following inequality

ψ̇0 +∇rv0 : P+∇rω0 : N ≥ 0. (3)
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The nematic ordering and the inertia tensor

We know that for a slender body the inertia tensor can be
decomposed as,

I = λ1(I − ν ⊗ ν) +O(ε)

where ε = ( r
H )

2. Furthermore, the macroscopic kinetic energy can
be computed as

m
1

2
|v0|2 +

1

2
ω0 · Iω0 =

1

2
m|v0|2 +

λ1
2
|ν|2 +O(ε),

as ε→ 0 we retrieve the same energy that is the starting point for
Ericksen theory of anisotropic fluids.
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Leslie-Ericksen rate of work hypothesis

Starting from the law for the kinetic temperature and the previous
decomposition of the inertia tensor in terms of the nematic director
we can obtain the following expression,∫

Ω

d

dt
(ψ − 1

2
m|v0|2) +∇rv0 : P+∇rω0 : N ≥ 0, (4)

where ψ = 1
2m|v |2 + 1

2Ω · IΩ can be interpreted as the stored
energy.

This is a kinetic derivation of Leslie rate of work hypothesis.
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The Oseen-Frank stored energy

“Whenever possible, substitute constructions out of known entities
for inferences to unknown entities.” – B. Russell

Making use of the fact that ν̇ = ω0 × ν = (∇ν)v0 we can rewrite
part of the stored energy as

ψOF (ν,∇ν) =
1

2
Ω · IΩ =

λ

2
tr
[
∇νTP∇ν

]
.

Using P(0) we get a stored energy functional very similar to the
Oseen-Frank energy

ψOF = p
λ1
2
tr
[
∇νT∇ν

]
.
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Noll–Coleman procedure

Since we are happy with our pressure tensor so far we make the
following ansatz

ψ = ψ(ν,∇ν)

where ν is the nematic director. Expanding the total derivative
and using the Ericksen identity we get the following expression in
tensor notation

ψ̇ = εiqp

[
(νq

∂ψ

∂(νp)
+ ∂k(νq)

∂ψ

∂(∂kνp)
)ω0

i + νq
∂ψ

∂(∂kνp)
∂kω

0
i

]
− ∂ψ

∂(∂kνp)
∂q(νp)∂(v

0
q )
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Noll–Coleman procedure

Substituting this expression into (4) and considering
thermodynamic processes for which the exact divergences
disappear, we get:[

Pij +
∂ψ

∂(∂jνp)
∂i (νp)

]
∂j(νi ) +

[
Nij − εiqpνq

∂ψ

∂(∂jνp)

]
∂j(ω

0
i )[

Ppq −
∂ψ

∂(∂pνk)∂q(νk)

]
εiqpω

0
i ≥ 0.

Since the above expression must hold for all thermodynamic
processes for which the exact divergences disappear, we get the
following constitutive relations:

P = ∇νT ∂ψ

∂(∇ν)
+P(0), Nij = εiqpνq

∂ψ

∂(∂jνp)
= ν × ∂ψ

∂(∇ν)
.
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Nematic law of angular momentum

Thanks to the new expression of the couple stress tensor it is
possible to rewrite the law of angular momentum for a static
nematic field as:

∂ψ

∂ν
−∇ · ∂ψ

∂∇ν
= λ(x)ν.

Substituting inside ψOF we get the following partial differential
equation,

∇ ·
[
p∇ν

]
+ p|∇ν|2ν = 0.

The solutions are not harmonic maps on a sphere.
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Experiments on acoustic propagation

Acoustic waves travel in NLC faster
in the direction parallel to the
nematic director [MLS72].

First order theory better fits
experimental data on acoustic
attenuation at low pressure [Gre49].
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Anisotropic waves

It can be shown that steady spherical solutions of (2) verify
∇νT∇ν ≈ Id + ν ⊗ ν. Therefore for this particular case we have
the following choice of pressure tensor:

P = P(0) + pId + pν ⊗ ν.

If we linearise the Euler equation with this choice of pressure
tensor we get the wave equation:

1

c2
∂2t pδ −∇ ·

[
(2I + ν ⊗ ν)∇pδ + pδ∇ · (ν ⊗ ν)

]
= 0.

Assuming pδ << 1 we can ignore the last term inside the
divergence.
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Anisotropic waves

It is well known that a planar wave solution of the above partial
differential equation

p(r , t) = A cos(k · r − ωt)

travelling in a transversely isotropic medium has phase speed

cs =
∂p

∂ρ
(ρ0) +

∂p

∂ρ
(ρ0)

(k · ν)2

|k |2

so we have an anisotropic speed of sound. A similar reasoning was
presented in [BDT14], where a theory for anisotropic waves
propagation across dense liquid crystals is developed.
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Conclusions

▶ Is the naive relation between the temperature and the peculiar
energy obtained from equipartition of energy theorem correct ?

▶ Using a Noll–Coleman argument for the closure of the
momentum hierarchy allows us to capture the anisotropy of
acoustic waves in rarefied liquid crystals.

▶ We hope to use the relations that arise from the closure
procedure presented today to compute Frank constants from
I, the inertia tensor of the spherocylinder we are considering.

Thank you for the attention !
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M. E. Mullen, B. Lüthi, and M. J. Stephen, Sound velocity in
a nematic liquid crystal, Phys. Rev. Lett. 28 (1972), 799–801.

UniCT Nematic Polyatomic Gas 25


