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Neural Networks

Let us fix an activation function σ : R→ R, we extend it component wise to,

σ : Rn → Rn

x 7→ (σ(x1), . . . , σ(xn))

Now we fix n ∈ N(d+2) and we say that a func-

tion f : Rn1 → Rnd+2 is a neural network if,

f (x) = Wd (σ (Wd−1 . . . σ (W0x + b0) + bd−1) + bd) .

We say a neural network is shallow if d = 1 while we say that a neural network

is deep if d > 1. We will write DNNN to denote a shallow neural network with

N neurons in its hidden layer.
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Abstract PDE

� Let X ,Y be two Hilbert space, equipped respectively with the scalar

products (·, ·)X and (·, ·)Y .

� Let Q ∈ L(X ,Y ) be a Fredholm differential operator, in particular

dim
(

N(Q)
)

= 0 where N(Q) is the null space of Q.

Given F ∈ Y find u ∈ X such that Qu = F ∈ Y .

The Poisson Problem

Given F ∈ Y find u ∈ X such that ∆u = F ∈ Y .

Variational Formulation – Poisson Problem1

Given f ∈ L2(Ω) find u ∈ H1
0 (Ω) such that

∫
Ω

∇u∇v =

∫
Ω

fv , ∀v ∈ H1
0 (Ω).

Given f ∈ L2(Ω) find u ∈ H2
0 (Ω) such that

∫
Ω

∆u∆v =

∫
Ω

f ∆v , ∀v ∈ H2
0 (Ω).

1Show connection with normal equations.
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Energy Minimisation Aspects – Critical Action Principle

There exists a fundamental connection between PDE and energy critical

points, in particular minimisers if the Lagrangian is convex.

u = argmin
v∈X

J(v ,F ) :=
1

2

∫
Ω

|∇v |2 −
∫

Ω

fv .

u = argmin
v∈X

‖Qv − F‖2
Y =

∫
Ω

|∆v − f |2,

= argmin
v∈X

J(v ,F ) :=
1

2

∫
Ω

|∆v |2 −
∫

Ω

f ∆v .
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Galerkin Discretisation

� Let Xh be the finite dimensional discretisation space DNNN .

� Notice that ours choice of discretisation space respects conformity,

i.e. Xh ⊂ X .

� Consider the discrete problem,

Find uh ∈ Xh such that Quh = Fh ∈ Yh,

where Fh is the projection of F on Q(Xh) by the scalar product of Y .

� In particular we focus our attention on the corresponding energy

minimisation,

uh = argmin
vh∈Xh

‖Qvh − Fh‖2
Y =

∫
Ω

|∆vh − f |2.
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PINNs – Montecarlo Quadrature

If we use as a quadrature formula for the energy a Montecarlo scheme

the discrete energy becomes,

Jh(u, f ) =
1

N2
Ω

N∑
i

|∆u(xi)− f (xi )|2 +
1

N∂Ω

N∑
i

|u(bi)|2

xi ∼ U(Ω) bi ∼ U(∂Ω) Ω = [0, 1]2

Searching for the minimizer of Jh(u, f ) in the space Xh = DNNN are

precisely PINNs2.

2At least shallow ones.
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A Priori Error Estimates

Considering a conforming Galerkin approximation, including PINNs, for

an abstract PDE we are interested in an a priori error estimate for,∥∥∥u − ∼uh

∥∥∥
X

where u is the exact solution of the PDE and
∼
uh is the computed

solution and uh the exact discrete solution.

We begin splitting the error as follows,∥∥∥u − ∼uh

∥∥∥
X

= ‖u − uh‖X +
∥∥∥uh − ∼uh∥∥∥

X
.
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A Priori Error Estimates – LSQFEM

The main idea here presented is to use idea from least square finite

elements in order to obtain an a priori error estimate for,

‖u − uh‖X .

In order to do this we need to make some hypothesis on the discrete

scalar product (·, ·)h used which produce the discrete energy functional,

(·, ·)h : Xh × Xh → R

(uh, vh)h 7→
1

N2
Ω

NΩ∑
i=1

uh(ωi )vh(ωi ) +
1

N1
∂Ω

N∂Ω∑
i=1

uh(βi )vh(βi ).
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A Priori Error Estimates – Assumptions

As we notice before the discrete lost function is given by,

Jh(u;F ) = ‖Qu − F‖2
h, uh = arg min

v∈Xh

Jh(v ;F ).

Assumption 1

We will further assume that two positive semi-definite bilinear form e(·, ·)
and ε(·, ·) exist, such that,

Jh(uh,F ) =
1

2

(
(uh, uh)h + (u, u)h + ε(u, u)

)
− (u, uh)h

−e(u, uh) ∀u ∈ X , ∀uh ∈ Xh,
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A Priori Error Estimates – Assumptions

Assumption 2

Fixed uh ∈ Xh it exists a set of points
{
δ1, . . . , δNDOF

}
such that,

uh(δ1) = · · · = uh(δNDOF ) = 0⇔ uh ≡ 0.

Furthermore we require that {δi}NDOF
i=1 ⊂ {ωi}NΩ

i=1 ∪ {βi}
N∂Ω

i=1 .

The above mentioned assumption can also be rephrased as uh(δi ) are

unisolvent degrees of freedom for functions in Xh.
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A Priori Error Estimates

Theorem (A Priori LSQFEM)3

Under the above previous assumption the following error estimate holds,

‖u − uh‖h ≤ inf
v∈Xh

‖u − v‖h + sup
v∈Xh

e(u, v)

‖v‖h
.

In particular if the least square functional Jh is r-consistent, i.e. it exist

r > 0 such that,

sup
v∈Xh

e(u, v)

‖v‖h
≤ C (u)N−r ,

then the above error estimate becomes,

‖u − uh‖h ≤ inf
v∈Xh

‖u − v‖h + C (u)N−r .

3Bochev, P. B., & Gunzburger, M. D. (2009). Least-squares finite element methods

(Vol. 166). Springer Science & Business Media.
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A Priori Error Estimates

Therefore given that the assumptions 1 and 2 are verified we get that,

∥∥∥u − ∼uh

∥∥∥
h

= inf
v∈Xh

‖u − v‖h + sup
v∈Xh

e(u, v)

‖v‖h
+
∥∥∥uh − ∼uh∥∥∥

h
.

Therefore we have the following source of errors,

1. the best approximation error ,

2. the consistency error,

3. the training error .

Furthermore we have an additional source of error, the quadrature

error, which is given by the fact that we would like to replace the norm

‖·‖h with the norm ‖·‖X .
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RELU Network and FEMa

aXu, J. (2020). The finite neuron method and convergence analysis. arXiv preprint

arXiv:2010.01458.



Rectified Linear Unit and FEM Shape Function

We now want to show that that one can reconstruct the linear finite elements

space using RELU activation functions.

We know the finite element shape function on

an uniformly spaced one dimensional mesh are

defined as,

ϕ : [0, 1]→ R

x 7→


h−1x x ∈ [−h, 0]

1− h−1x x ∈ [0, h]

0 x 6∈ [−h, h]

−h h

ϕ

now is just a matter of observing that one can rewrite the shape function ϕ as

a linear combination of RELU functions with bias,

ϕ(x) = h−1σ(x + h) − 2h−1σ(x) + h−1σ(x − h) .
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RELU and FEM – Representation of Shape Function

Now we would like to prove the same result for an n-dimensional case.

Lemma – Max Min Shape Function
Given a point xi , we denote G(i) the union of

elements of the mesh having xi ad vertex, then

the tent function corresponding to xi can be

written as,

ϕi (x) = max
{

0, min
Tk⊂G(i)

gk(x)
}

where the function gk is the linear function

coinciding with the tent function on Tk ,

provided G(i) is convex.

xi

H

To explain this we consider two different cases, the first is when x belong to

Tk0 ⊂ G(i). Then we consider the hyper plane H and we focus our attention

on gk0 . In particular for all y ∈ H ∩ Tk0 we notice that,

gk(y) ≥ gk0 (y).
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RELU and FEM – Representation of Shape Function

Now gk(xi ) = gk0 (xi ) = 1 and therefore gk(x) ≥ gk0 (x).

Now let as assume that xi 6∈ G(i) then we consider the hyper plane connecting

x and xi , denoted in red. Now we consider the mesh element where the hyper

plane lies to draw the H hyper plane. In particular since xi and x are on

different side of the hyper plane H and we know gk is null on H then g(x) < 0

and therefore we need to impose the maximum with zero.
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RELU and FEM – The Merge and Sort Proof

We are now ready to prove the inclusion of the FEM space with in shallow

RELU neural network.

Theorem
Given a locally convex d-dimensional grid any P1 spline on the grid

characterised by NDOF degrees of freedom can be also expressed as a RELU

neural network with log2(kT ) + 1 hidden layers and O(kT NDOF ) neuron,

where kT is the maximum number of neighborhood elements in the mesh.

Proof
We notice the following to begin with,

min{a, b} =
a + b

2
− |a− b|

2
= vσ

(
W ·

[
a

b

])
,

where v and W are defined as,

v =
1

2


1

−1

−1

−1

 W =


1 1

−1 −1

1 −1

−1 1

 .
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RELU and FEM – The Merge and Sort Proof

Now from the previous lemma we know we can represent each shape function

as a max min problem, in particular the idea is to split each minimisation into

sub minimisation until we are only comparing two elements. This operation can

be represented using one RELU mapping. Therefore we need to concatenate

log2(kT ) operations in this process. Now since the structure of the tree we

have constructed in binary we can easily see that the number of nodes needed

in the network is 2k where k is the depth of the tree, this results in O(kT )

nodes per shape function.
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RELU and FEM – Approximation Theory

Now that we have established a connection between linear finite elements and

shallow RELU neural network we can use this connection to develop an

interesting approximation estimate property,

Theorem
Given Ω = [0, 1] and a function f ∈ H2(Ω) it exists a function fn ∈ DNNN

1 such

the following estimate works,

||f − fn||L2(Ω) ≤ Cf N−2.

Proof
The idea is the following, we know that for a function f : [0, 1]→ R that lives

in H2(Ω), it exists a linear FEM function fN : [0, 1]→ R such that:

||f − fN ||L2(Ω) ≤ C |f |H2

(
N

3

)−2

,

and this function can be represented as a DNNN
1 with RELU activation

function.
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RELU and FEM – Approximation Theory

Theorem (Petrushev)4

Let Ω be the unit ball in Rd and f ∈ H2(Ω) then it exists fN ∈ DNNN
1

sucht that the folloing estimate holds,

‖f − fN‖L2(Ω) ≤ C‖f ‖H2

(
N

3

) 1
2−

3
2d

.

4Petrushev, P. P. (1998). Approximation by ridge functions and neural networks.

SIAM Journal on Mathematical Analysis, 30(1), 155-189.
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Barron-Xu Space



Barron Spaces

Definition (Barron Space)
Let us consider the closure of the convex symmetric hull of D,

B1(D) =
{ n∑

j=1

ajdj : n ∈ N, dj ∈ D,
∥∥∥{aj}nj=1

∥∥∥
`1

≤ 1
}
.

we define the Barron space and the associated norm as follow:

‖·‖K(D) = inf
{
c > 0 : cf ∈ B1(D)

}
,

K(D) =
{
f ∈ X : ‖f ‖K(D) <∞

}
.

In particular, given the fact that X is a Hilbert space, it is obvious that

KD is a subset of X .
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Barron Space – Dictionary

We now introduce the dictionary specific for shallow neural network, i.e.

Dσ =
{
σ(wi · x + bi ) : wi ∈ Rd and bi ∈ R

}
.

We can also define the space of shallow neural network with a small, but

important, additional requirement,

ΣN,M(D) =
{ N∑

j=1

ajdj : dj ∈ D and
∥∥{aj}Nj=1

∥∥
`1
≤ M

}
.
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Barron Space – Approximations

Theorem (Maurey and Pisier – DeVore5)
Let X be a Hilbert space and given f ∈ K(Dσ) we have the following

approximation estimate:

inf
fN∈ΣN,M (Dσ)

‖f − fN‖X ≤ CXKDσ‖f ‖K1(Dσ)N
− 1

2 ,

where CX is the type-2 constant for the space X . Furthermore when σ is

a bounded activation function then Dσ is uniformly bounded in K(Dσ)

5DeVore, R. A. (1998). Nonlinear approximation. Acta numerica, 7, 51-150.
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A Priori Error Estimates – Rademacher Complexity Analysis

Theorem (Quadrature Error)6

Given a class of functions F : Ω→ R and a collection of sample points

{ωi}NΩ

i=1,

Eωi∼D(Ω) sup
h∈F

∣∣∣∣∣
NΩ∑
i=1

h(ωi )

NΩ
−
∫

Ω

h(x) dD(Ω)

∣∣∣∣∣ ≤ 2RNΩ
(F )

:= Eωi∼D(Ω)Eξi

[
sup
h∈F

1

NΩ

NΩ∑
i=1

ξh(ωi )

]
,

where ξi are Rademacher random variables and ωi are uniformly

distributed points that includes the δi , . . . , δNDOF from Assumption 1.

6Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint

(Vol. 48). Cambridge University Press.
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Rademacher Complexity Analysis

Corollary
Let F ,G be as in the previous slides. If we consider f ∈ F and g ∈ G

then the following inequalities holds:

Eωi∼D(Ω)‖f ‖
2
h ≤ Eωi∼D(Ω)‖f ‖

2
X + 2RNΩ

(F ),

Eωi∼D(Ω)‖f ‖
2
X ≤ Eωi∼D(Ω)‖f ‖

2
h + 2RNΩ

(F ),

Eβi∼D(∂Ω)‖g‖
2
h ≤ Eβi∼D(∂Ω)‖g‖

2
X + 2RN∂Ω

(G ),

Eβi∼D(∂Ω)‖g‖
2
X ≤ Eβi∼D(∂Ω)‖g‖

2
h + 2RN∂Ω

(G ).
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Rademacher Complexity Analysis

Theorem7

We will assume that ‖aα‖L∞(Ω) ≤ Ka, ‖bα‖L∞(Ω) ≤ Kb, f ∈ L∞(Ω) and

g ∈ L∞(∂Ω) then we have the following bounds,

RNΩ
(F Ω

N,M) ≤ MKa

(
KDσ + 2‖f ‖L∞(Ω)

) ∑
|α|≤m

RNΩ
(∂αDσ),

RN∂Ω
(F ∂Ω

N,M) ≤ MKb

(
KDσ + 2‖g‖L∞(∂Ω)

) ∑
|α|≤m

RN∂Ω
(∂αDσ),

provided that u 7→ (u, u)y is a locally Lipschitz function. Assuming the

activation function σ lives in Wm+1,∞, then for any α such that |α| ≤ m

one has the following estimate for the Rademacher complexity,

RNp (∂αDσ) ≤ CNp
− 1

2 .

7Hong, Q., Siegel, J. W., & Xu, J. (2021). A priori analysis of stable neural network

solutions to numerical pdes. arXiv preprint arXiv:2104.02903.
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Main Result

Combining what we have seen up until now we get the following result,

Theorem
Let u and uh be the usual continuous and discrete minimizer of the

energy functional corresponding to the PDE, furthermore assuming

u ∈ K(Dσ), F ∈ L∞(Ω) and σ ∈ Wm+1,∞ then,

Eωi ,βi‖u − uh‖X ≤ 2CXKDσ‖u‖K1(Dσ)N
− 1

2

+ 3CaN
− 1

4

Ω + 3CbN
− 1

4

∂Ω ,

where in this case N is the number of neurons in the shallow layer, NΩ

and N∂Ω are respectively the number of evaluation points on the

boundary and inside of Ω.
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Regularity Theory



Regularity – An Example

Example8

We consider the following PDE on the all Rd ,

−∆u = max{0, x1}

the above PDE has solution u(x) = −max{0,x1}3

6 + h(x) where h is an

harmonic function. It is possible to show that u grows so quickly that

‖u‖K(Dσ) can’t be finite if σ is the RELU activation function.

8Weinan, E., & Wojtowytsch, S. (2022, April). Some observations on

high-dimensional partial differential equations with Barron data. In Mathematical and

Scientific Machine Learning (pp. 253-269). PMLR.
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Regularity – Conforming Activation Function

An alternative idea would be to consider σ ∈ C 2,α(R) and observe that,

∆
[
aσ(ωT x + b)

]
= a|ω|2∂2σ(ωT x + b).

Therefore if σ ∈ C 2,α(R) and f ∈ K(D∂2σ) then u solution of the Poisson

problem over the all domain lives in u ∈ K(Dσ). This argument comes

from Weinan, E., & Wojtowytsch, S. (2022, April). Some observations

on high-dimensional partial differential equations with Barron data. In

Mathematical and Scientific Machine Learning (pp. 253-269). PMLR,

where it has also been applied to other PDE.
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Regularity – The Role of Boundary Conditions

Example 9

Let u be the solution of the Laplace equation in d dimension,{
−∆u(x) = 0 |x | < 1,

u(x) = max{0, x1} |x | = 1.

Assuming u ∈ K(Dσ3 ) then we can extend u to the all space and observe

that u is discontinuous on the equator of the ball |x | ≤ 1. Using the fact

that singular set of a Barron functions is the countable union of affine

spaces we found an absurd when d > 2.

9Weinan, E., & Wojtowytsch, S. (2022, April). Some observations on

high-dimensional partial differential equations with Barron data. In Mathematical and

Scientific Machine Learning (pp. 253-269). PMLR.
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Second Order Methods For

Training



Second Order Training

In this section of the presentation I’d like to make a case for second order

training methods when training neural networks for solving PDE. In

particular we are concerned with a part of the error never explored before∥∥∥uh − ∼uh∥∥∥
X
.

One way of obtaining a minimzer
∼
uh such that the above quantity can be

bounded a priori is to use a greedy algorithm10 but we will not concern

our self with this problem at the moment.

10Hao, W., Jin, X., Siegel, J. W., & Xu, J. (2021). An efficient greedy training

algorithm for neural networks and applications in PDEs. arXiv preprint

arXiv:2107.04466.
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The Problem – Network and Loss

To make a case for second order training method we will consider a very

particular example of elliptic PDE, i.e. the L2 regression applied on functions in

2D and 3D.

The idea behind the problem we are considering is to construct a neural

network with the shape to the one consider until now but deeper.

Number of Hidden Layers: 3

Number of Neurons per Hidden Layers: 100

Dimension of parameter space: ∼ 20000

In particular the loss functional taken into consideration is,

L(u, f ) =
1

N

N∑
i=1

|u(xi)− f (xi )|2, xi ∼ U(Ω), Ω = [0, 1]2.
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The Problem – Interpolation

Figure 1: The figure displays the two function we would like to interpolate. In

particular on the left we have our 2D problem, while on the right we have one

time frame of the 3D problem.
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The Problem – Why this problem ?

The particular reason why we chose this problem are,

� The problem is big enough, in the sense that in the 2D case we train with

104 random points, while in the 3D case we train with 106 random points.

� The problem is easy to scale, we can easily considered more sampled

points and deeper/larger newtorks.

� The problem is highly non convex, as many of the problems that appear

in practice.
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The Standard Methods

We will compare different methods,

� ADAM,

� BFGS11,

� Second order methods

xn+1 = xn − γ
∼
Hf (xn)−1∇f (xn),

where
∼
H is a matrix containing second order information, in particular we

considered,

� Newton methods,
∼
H is the exact Hessian,

� Gauss-Newton methods,
∼
H = JT (∂2

yL)J.

The linear system
∼
Hf (xn)δ = ∇f (xn), is solved using a Krylov iterative

method.

11Wright, S., & Nocedal, J. (1999). Numerical optimization. Springer Science,

35(67-68), 7.
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The Standard Methods – Loss History

There is evidence that second order method are superior then first order

method to train our network to interpolate the function.

Figure 2: The figure show how the objective function decays for four different

method Newton,Gauss-Newton, BFGS and ADAM.
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The Standard Methods – Loss History

Figure 3: The figure show how the objective function decays for four different

method Newton,Gauss-Newton, BFGS and ADAM.
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Result – ADAM

Figure 4: The figure shows the outcome of the training for both our toy

problem, when as training method we used ADAM. On the left we have our 2D

problem, while on the right we have one time frame of the 3D problem. In

particular we notice that small features can’t be resolved with ADAM.
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Result – Gauss-Newton

Figure 5: The figure shows the outcome of the training for both our toy

problem, when as training method we used Newton. On the left we have our

2D problem, while on the right we have one time frame of the 3D problem. In

particular we notice that small features can be resolved sing Newton method.
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Learning Coordinates Matters

We now observe the difference if we train the first 3D problem using a

data set in polar coordinates or in Cartesian coordinates.

Figure 6: On the left we have considered polar coordinates while on the right

we have used Cartesian coordinates in the data set used to train the neural

network.
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An Example – Physically

Informed Neural Network



Physically Informed Neural Networks – PINNs

We will focus our attention on a particular PDE form now on, ie.

∆u = f in Ω

u ≡ 0 on ∂Ω

If we consider as energy functional J(u,F ) and J(uh,F ) the continuous and

discrete residual we will obtain the so-called dumb least square formulation for

the Laplace problem, i.e.

find u ∈ X such that

∫
Ω

∆u∆v =

∫
f ∆v ∀v ∈ X . 12

In particular if we discretise the energy using a Montecarlo scheme we obtain

the following energy functional,

L(u, f ) =
1

N2
Ω

N∑
i

|∆u(xi)− f (xi )|2 +
1

N∂Ω

N∑
i

|u(bi)|2

xi ∼ U(Ω) bi ∼ U(∂Ω) Ω = [0, 1]2

12Bochev, P. B., & Gunzburger, M. D. (2009). Least-squares finite element methods

(Vol. 166). Springer Science & Business Media.PINNs and GaLS: A Priori Error Estimates for Shallow Physics Informed Neural Networks 39 / 45



PINNs– Laplacian Eigenvalue

The minimization problem for the PINN requires a long training in

particular the figures below are computed using 50000 iteration of ADAM.

Figure 7: The figures above show the first eigenfunction of the Laplacian

computed numerically and the residual both in the collocation points.
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PINNs – Laplace Eigenfunctions

One strong advantage of PINNs is that they outperform all other method

at inference time, by a very large factor.

Figure 8: The figures shows on the left the points used to evaluate the

collocation error, while the right one can see the solution at inference time on

million degree of freedom.
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An Other Example – The Infinity

Laplacian



The Infinity Laplacian

Given a smooth function ϕ : Ω ⊂ Rd → R we define the infinity

Laplacian operator as,

∆∞ϕ :=
n∑

i,j=1

ϕxiϕxjϕxixj = Hϕ∇φ · ∇φ.

� The infinity Laplacian is an operator not expressible in divergence

form, i.e. we can’t integrate by parts to obtain a weak formulation.

� We define the solution of{
∆∞ϕ = 0 in Ω

ϕ|∂Ω = g

using the notion of viscosity solution.

� There regularity theory of the infinity Laplacian is incomplete.
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The Infinity Laplacian – Why Neural Networks

� There is evidence that deep neural networks can well approximate

the viscosity solution of partial differential equations.13

� We are interested in the Infinity Laplacian in high dimensions.

� We need a numerical scheme not based on a weak solution.

13See reference in Weinan, E., & Wojtowytsch, S. (2022, April). Some observations

on high-dimensional partial differential equations with Barron data. In Mathematical

and Scientific Machine Learning (pp. 253-269). PMLR.
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The Infinity Laplacian – PINNs

We minimize the following loss functional within the set of discrete

functions made by deep neural network in this case,

L(u, f ) =
1

N2
Ω

N∑
i

|∆∞u(xi)|2 +
1

N∂Ω

N∑
i

|u(bi)− g(bi)|2

Figure 9: On the right the computed solution of the Aronsson example, on the

left the error in log scale.
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Conclusion

� We can use ideas developed in the context of Least SQuares Finite

Elements Methods and GAlerkin Least Squares in order to

analyse PINNs and other deep neural networks methods used in

scientific computing.

� The a priori estimates here presented is far (really far !) from being

optimal.

� If we want to use PINNs in scientific computing we need to become

better at training.

� Elliptic regularity results in terms of Barron spaces need to be

developed.
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Thank you !
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