

Mathematical Institute

Divergence-free discretisations of the Stokes eigenvalue problem

Fleurianne Bertrand *, Daniele Boffi †, <u>U. Zerbinati</u> ‡

- * Chemnitz University of Technology
- † King Abdullah University of Science and Technology
- ‡ University of Oxford

PRISM Hackathon, 19th of April 2023

https://github.com/UZerbinati/PRISM2023

Find $(\mathbf{u}, p) \in H_0^1(\Omega) \times \mathcal{L}_0^2(\Omega)$ such that $\forall (\mathbf{v}, q) \in H_0^1(\Omega) \times \mathcal{L}_0^2(\Omega)$, $\nu(\nabla \mathbf{u}, \nabla \mathbf{v})_{\mathcal{L}^2(\Omega)} - (\nabla \cdot \mathbf{v}, p)_{\mathcal{L}^2(\Omega)} = \lambda_n (\mathbf{u}, \mathbf{v})_{\mathcal{L}^2(\Omega)},$ $(\nabla \cdot \mathbf{u}, q)_{\mathcal{L}^2(\Omega)} = 0,$

with $\lambda_n \in \mathbb{C}$, and $\nu \in \mathbb{R}_{>0}$ is the fluid viscosity.

- ► Are the eigenvalue of this problem real?
- ▶ Do the eigenvalue of this problem diverge?

We introduce the space
$$H^1_{0,0}(\Omega) = \Big\{ \mathbf{v} \in H^1_0(\Omega) \ : \ \nabla \cdot \mathbf{u} = 0 \Big\}.$$

Find $\mathbf{u} \in H^1_{0,0}(\Omega)$ such that $\forall \, \mathbf{v} \in H^1_{0,0}(\Omega)$,

$$\nu(\nabla \mathbf{u}, \nabla \mathbf{v})_{\mathcal{L}^2(\Omega)} = \lambda_n (\mathbf{u}, \mathbf{v})_{\mathcal{L}^2(\Omega)},$$

with $\lambda_n \in \mathbb{C}$, and $\nu \in \mathbb{R}_{>0}$ is the fluid viscosity.

- ▶ The eigenvalue problem is self-adjoint therefore $\lambda_n \in \mathbb{R}$.
- H¹_{0,0}(Ω) is compactly embedded in L²(Ω) and therefore operator corresponding to the eigenvalue problem is compact, implying λ_n → ∞ as n → ∞.

Find $(\mathbf{u}^h, p^h) \in V_h \times Q_h$ such that $\forall (\mathbf{v}^h, q^h) \in V_h \times Q_h$,

$$\begin{split} \nu (\nabla \mathbf{u}^h, \nabla \mathbf{v}^h)_{\mathcal{L}^2(\Omega)} &- (\nabla \cdot \mathbf{v}^h, p^h)_{\mathcal{L}^2(\Omega)} = \lambda_n \; (\mathbf{u}^h, \mathbf{v}^h)_{\mathcal{L}^2(\Omega)}, \\ (\nabla \cdot \mathbf{u}^h, q^h)_{\mathcal{L}^2(\Omega)} = 0, \end{split}$$

with $\lambda_n^h \in \mathbb{C}$, $\nu \in \mathbb{R}_{>0}$ is the fluid viscosity, and

$$V_h \times Q_h \subset H^1_0(\Omega) \times \mathcal{L}^2_0(\Omega).$$

Under what hypotheses on V_h and Q_h is this eigenvalue problem well-posed ?

The divergence-free constraint

$$b(\mathbf{v}^h,q^h)=(
abla\cdot\mathbf{v}^h,q^h)_{\mathcal{L}^2(\Omega)}=0$$

Find $\mathbf{u}_h \in \mathbb{K}_h$ such that $\forall \mathbf{v}_h \in \mathbb{K}_h$,

$$\nu(\nabla \mathbf{u}^h, \nabla \mathbf{v}^h)_{\mathcal{L}^2(\Omega)} = \lambda_n^h (\mathbf{u}^h, \mathbf{v}^h)_{\mathcal{L}^2(\Omega)},$$

with $\lambda_n \in \mathbb{C}, \ \nu \in \mathbb{R}_{>0}$ is the fluid viscosity and

$$\mathbb{K}_{h} = \Big\{ \mathbf{v}^{h} \in V_{h} : b(\mathbf{v}^{h}, q^{h}) = 0, \forall q^{h} \in Q_{h} \Big\}.$$
$$\mathbb{K}_{h} \not\subset H^{1}_{0,0}(\Omega)$$

$$abla \cdot V_h \subset Q_h$$

Under this hypothesis, we have the following result, i.e.

$$b(\mathbf{v}^h,q^h)=(
abla\cdot\mathbf{v}^h,q^h)_{\mathcal{L}^2(\Omega)}=0\Leftrightarrow
abla\cdot\mathbf{v}^h=0,$$

which implies the functions are point-wise divergence-free.

$$\mathbb{K}_h \subset H^1_{0,0}(\Omega)$$

Find $\mathbf{u}_h \in \mathbb{K}_h$ such that $\forall \mathbf{v}_h \in \mathbb{K}_h$,

$$\nu(\nabla \mathbf{u}^h, \nabla \mathbf{v}^h)_{\mathcal{L}^2(\Omega)} = \lambda_n^h (\mathbf{u}^h, \mathbf{v}^h)_{\mathcal{L}^2(\Omega)},$$

with $\nabla \cdot V_h \subset Q_h$, $\lambda_n \in \mathbb{C}$, $\nu \in \mathbb{R}_{>0}$ is the fluid viscosity.

This problem is well-posed and we can analyse it using Babuška-Osborn theory.

Babuška–Osborn theory

Theorem

For each $n \in \mathbb{N}$, we have

$$\lambda_n \leq \lambda_n^h \leq \lambda_n + C \sup_{\mathbf{u} \in E, \|\mathbf{u}\| = 1} \inf_{\mathbf{v}^h \in \mathbb{K}_h} \|\mathbf{u} - \mathbf{v}_h\|_{H^1(\Omega)}^2$$

and there exists $\bm{w}_n^h \in \langle \bm{u}_n^h, \dots, \bm{u}_{n+m-1}^h \rangle$ such that

$$\|\mathbf{u}_n - \mathbf{w}_n^h\| \le C \sup_{\mathbf{u} \in E, \|\mathbf{u}\| = 1} \inf_{\mathbf{v}^h \in \mathbb{K}_h} \|\mathbf{u} - \mathbf{v}_h\|_{H^1(\Omega)}$$

where m, E and \mathbf{u}_n are respectively the multiplicity, eigenspace and eigenvector corresponding to the eigenvalue λ_n .

An example – special mesh

Lemma

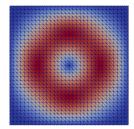
Let $\mathbf{u} \in H^s(\Omega) \cap H^1_{0,0}(\Omega)$, with $s \geq 2$. On a special mesh obtained from a uniform square mesh dividing each cell along one of its diagonals there exists a $\mathbf{u}^h \in [\mathbb{P}^k(\mathcal{T}_h)]^2$ such that

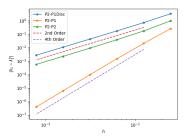
$$\nabla \cdot \mathbf{u}_{h} = 0,$$

$$\|\mathbf{u} - \mathbf{u}_{h}\|_{H^{1}(\Omega)} \leq C \|\mathbf{u}\|_{H^{s}(\Omega)} \cdot \begin{cases} h^{\min(k-1,s-1)}, & k \in \{1,2,3\} \\ h^{\min(k,s-1)}k^{(1-s)}, & k \geq 4 \end{cases}$$

An example – special mesh

$$[\mathbb{P}^2(\mathcal{T}_h)]^2 - \mathbb{P}^1_{disc}(\mathcal{T}_h)$$





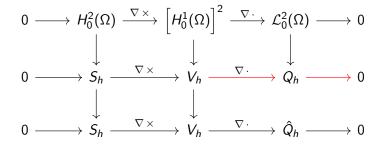
► We say that Q_h verifies the weak approximability condition if there exists $\gamma_1(h)$, such that for every $q \in \mathcal{L}^2_0(\Omega)$

$$\sup_{\mathbf{v}^h \in \mathbb{K}_h} \frac{b(\mathbf{v}^h, q)}{\|\mathbf{v}_h\|_{H^1(\Omega)}} \leq \omega_1(h) \|q\|_{\mathcal{L}^2(\Omega)} \text{ and } \lim_{h \to 0} \gamma_1(h) = 0.$$

► We say V_h verifies the strong approximability condition if there exists $\gamma_2(h)$, such that for every $\mathbf{v} \in H^1_{0,0}(\Omega) \cap H^2(\Omega)$

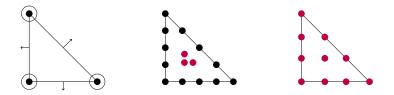
$$\inf_{\mathbf{v}^h \in \mathbb{K}_h} \left\| \mathbf{v} - \mathbf{v}^h \right\|_{H^1(\Omega)} \leq \gamma_2(h) \left\| \mathbf{v} \right\|_{H^2(\Omega)} \text{ and } \lim_{h \to 0} \gamma_2(h) = 0.$$

Finite Element Exterior Calculus



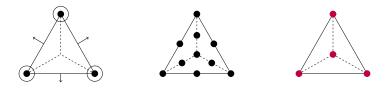
Couple more example

▶ [P⁴(T_h)]² - P³_{disc}(T_h), will be a converging scheme on a criss-cross mesh even if this choice of the element is not inf-sup stable. Best approximation estimates can be derived from the Morgan-Scott-Vogelius complex.



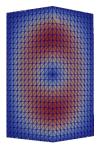
Couple more example

▶ [P²(T_h)]² - P²(T_h), will be a converging scheme on a barycentrically refined mesh even if this choice of the element is not inf-sup stable. Best approximation estimates can be derived from Hsieh-Clough-Tocher complex.



Conclusions

- There is no need to characterise the range of the divergence operator!
 This is crucial for three-dimensional problems.
- A wide variety of finite element space pairs can be used even if they are not inf-sup stable.



Thank you for your attention !