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The applications

▶ The eigenvalues of the
Stokes eigenproblem play
a crucial role in
computing a critical
value for the Reynolds
number, above which we
will predict instabilities in
Coutte flow.
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Our contribution

▶ We realised that the weak-approximability condition is
automatically verified in divergence-free discretisations, this
allows for an easier analysis rather than using the
Boffi–Brezzi–Gastaldi theory.

▶ We prove well-posedness without characterising the range
of the discrete divergence operator. This characterisation
was needed for previous proofs.

▶ We develop best approximation estimates, independent of
the inf-sup, for functions living in the kernel of the discrete
divergence operator, using finite element exterior
calculus.
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Weak Stokes eigenvalue problem

Find (u, p)∈H1
0 (Ω)×L2

0(Ω) such that ∀(v, q)∈H1
0 (Ω)×L2

0(Ω),

ν(∇u,∇v)L2(Ω) − (∇ · v, p)L2(Ω) = λn (u, v)L2(Ω),

(∇ · u, q)L2(Ω) = 0,

with λn ∈ C, and ν ∈ R>0 is the fluid viscosity.

▶ Are the eigenvalue of this problem real?

▶ Do the eigenvalue of this problem diverge?
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Weak Stokes eigenvalue problem – Laplace form

We introduce the space H1
0,0(Ω) =

{
v ∈ H1

0 (Ω) : ∇ · u = 0
}
, to

obtain an equivalent formulation.

Find u∈H1
0,0(Ω) such that ∀ v∈H1

0,0(Ω),

ν(∇u,∇v)L2(Ω) = λn (u, v)L2(Ω),

with λn ∈ C, and ν ∈ R>0 is the fluid viscosity.

▶ The eigenvalue problem is self-adjoint therefore λn ∈ R.
▶ H1

0,0(Ω) is compactly embedded in L2(Ω) and therefore
operator corresponding to the eigenvalue problem is compact,
implying λn → ∞ as n → ∞.
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Discrete weak Stokes eigenvalue problem

Find (uh, ph)∈Vh×Qh such that ∀ (vh, qh) ∈ Vh × Qh,

ν(∇uh,∇vh)L2(Ω) − (∇ · vh, ph)L2(Ω) = λn (uh, vh)L2(Ω),

(∇ · uh, qh)L2(Ω) = 0,

with λh
n ∈ C, ν ∈ R>0 is the fluid viscosity, and

Vh×Qh⊂H1
0 (Ω)×L2

0(Ω).

Under what hypotheses on Vh and Qh is this eigenvalue
problem well-posed?
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Babuška–Banach–Brezzi condition

Inf-Sup

The necessary and sufficient condition for
the well-posedness of the source problem is
given by the inf-sup condition, i.e.

inf
ph∈Qh

sup
vh∈Vh

(∇ · vh, ph)L2(Ω)

∥vh∥H1(Ω) ∥ph∥L2(Ω)

≥ β,

where β ideally is independent of h.

F. Brezzi and I. Babuška
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Boffi-Brezzi-Gastaldi observation

Necessary and sufficient conditions

When it comes to the eigenvalue problem
of the Stokes type, the inf-sup condition is
not necessary.

Q1-P0 Example

Boffi, Brezzi and Gastaldi, showed that the
Q1-P0 finite element pair will lead to a
converging eigenvalue problem, even if for
this choice of element pair β(h) ↘ 0 as
h → 0.

Enio De Giorgi, 1928–1996
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Boffi–Brezzi–Gastaldi conditions for Stokes

▶ We say that Qh verifies the weak approximability condition
if there exists γ1(h), such that for every q ∈ L2

0(Ω)

sup
vh∈Kh

(∇ · vh, q)
∥vh∥H1(Ω)

≤ ω1(h) ∥q∥L2(Ω) and lim
h→0

γ1(h) = 0.

▶ We say Vh verifies the strong approximability condition if
there exists γ2(h), such that for every v ∈ H1

0,0(Ω) ∩ H2(Ω)

inf
vh∈Kh

∥∥∥v − vh
∥∥∥
H1(Ω)

≤ γ2(h) ∥v∥H2(Ω) and lim
h→0

γ2(h) = 0.
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The divergence-free constraint

b(vh, qh) = (∇ · vh, qh)L2(Ω) = 0

Find uh∈Kh such that ∀ vh∈Kh,

ν(∇uh,∇vh)L2(Ω) = λh
n (uh, vh)L2(Ω),

with λn ∈ C, ν ∈ R>0 is the fluid viscosity and

Kh =
{
vh ∈ Vh : b(vh, qh) = 0,∀ qh∈Qh

}
.

Kh ̸⊂ H1
0,0(Ω)
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Divergence-free discretisations

∇ · Vh ⊂ Qh

Under this hypothesis, we have the following result, i.e.

b(vh, qh) = (∇ · vh, qh)L2(Ω) = 0 ⇔ ∇ · vh = 0,

which implies the functions are point-wise divergence-free.

Kh ⊂ H1
0,0(Ω)
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Divergence discretisations eigenvalue problem

Find uh∈Kh such that ∀ vh∈ Kh,

ν(∇uh,∇vh)L2(Ω) = λh
n (uh, vh)L2(Ω),

with ∇ · Vh ⊂ Qh, λn ∈ C, ν ∈ R>0 is the fluid viscosity.

This problem is well-posed and we can analyse it using
Babuška-Osborn theory.
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Finite Element Exterior Calculus

0 H2
0 (Ω)

[
H1
0 (Ω)

]2
L2
0(Ω) 0

Σh Φh Ξh

0 Σh Φh Ξ∗
h 0

∇× ∇ ·

∇× ∇ ·
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A few more example

▶ [P4(Th)]2 − P3
disc(Th), will be a converging scheme on a

criss-cross mesh even if this choice of the element is not
inf-sup stable. Best approximation estimates can be derived
from the Morgan-Scott-Vogelius complex.
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A few more examples

▶ [P2(Th)]2 − P2
disc(Th), will be a converging scheme on a

barycentrically refined mesh even if this choice of the element
is not inf-sup stable. Best approximation estimates can be
derived from Hsieh-Clough-Tocher complex.
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Conclusions

▶ There is no need to
characterise the range of
the divergence operator!
This is crucial for
three-dimensional
problems.

▶ A wide variety of finite
element space pairs can
be used even if they are
not inf-sup stable.

Thank you for your attention!
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