Rational functions meet virtual elements: The lightning VEM

M.L. Trezzi $\dagger, \underline{\text { U. Zerbinati* }}$

* Mathematical Institute

University of Oxford
\dagger Dipartimento di Matematica
Università di Pavia
https://arxiv.org/abs/2308.03560

Numerical Analysis in the 21st Century, 15st August 2023, Oxford

Oxford
Mathematics

Advection-diffusion-reaction problem

The advection-diffusion-reaction equation models the concentration $u: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ of a substance under:

Advection-diffusion-reaction problem

The advection-diffusion-reaction equation models the concentration $u: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ of a substance under:

- diffusion, the movement of a chemical species according to the concentration gradient without bulk motion. The diffusion coefficient ε, is the proportionality constant between the species flux and the concentration gradient.

$$
\varepsilon \Delta u \quad=f
$$

- f represent a constant source or sink of chemical species.

Advection-diffusion-reaction problem

The advection-diffusion-reaction equation models the concentration $u: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ of a substance under:

- diffusion, the movement of a chemical species according to the concentration gradient without bulk motion. The diffusion coefficient ε, is the proportionality constant between the species flux and the concentration gradient.
- advection, the transport of the chemical species by bulk motion of a fluid, of velocity $\overrightarrow{\boldsymbol{\beta}}$.

$$
\varepsilon \Delta u+\overrightarrow{\boldsymbol{\beta}} \cdot \nabla u \quad=f
$$

- f represent a constant source or sink of chemical species.

Advection-diffusion-reaction problem

The advection-diffusion-reaction equation models the concentration $u: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ of a substance under:

- diffusion, the movement of a chemical species according to the concentration gradient without bulk motion. The diffusion coefficient ε, is the proportionality constant between the species flux and the concentration gradient.
- advection, the transport of the chemical species by bulk motion of a fluid, of velocity $\overrightarrow{\boldsymbol{\beta}}$.
- reaction, the source or sink of chemical species depending up on the concentration of the chemical species, by the constant γ.

$$
\varepsilon \Delta u+\overrightarrow{\boldsymbol{\beta}} \cdot \nabla u+\gamma u=f
$$

- f represent a constant source or sink of chemical species.

Advection-diffusion-reaction problem

Multiplying by a test function and integrating by parts we find the weak formulation of the advection-diffusion-reaction problem, i.e. find $u \in H_{0}^{1}(\Omega)$ such that for all $v \in H_{0}^{1}(\Omega)$,

$$
\varepsilon \int_{\Omega} \nabla u \cdot \nabla v d \overrightarrow{\boldsymbol{x}}+\int_{\Omega}(\overrightarrow{\boldsymbol{\beta}} \cdot \nabla u) v d \overrightarrow{\boldsymbol{x}}+\gamma \int_{\Omega} u v d \overrightarrow{\boldsymbol{x}}=\int_{\Omega} f v d \overrightarrow{\boldsymbol{x}} .
$$

Advection-diffusion-reaction problem

Multiplying by a test function and integrating by parts we find the weak formulation of the advection-diffusion-reaction problem, i.e. find $u \in H_{0}^{1}(\Omega)$ such that for all $v \in H_{0}^{1}(\Omega)$,

$$
\varepsilon \int_{\Omega} \nabla u \cdot \nabla v d \overrightarrow{\boldsymbol{x}}+\int_{\Omega}(\overrightarrow{\boldsymbol{\beta}} \cdot \nabla u) v d \overrightarrow{\boldsymbol{x}}+\gamma \int_{\Omega} u v d \overrightarrow{\boldsymbol{x}}=\int_{\Omega} f v d \overrightarrow{\boldsymbol{x}} .
$$

We can rewrite this problem in compact form, using the bilinear form $a(\cdot, \cdot): H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$, i.e. find $u \in H_{0}^{1}(\Omega)$ such that for all $v \in H_{0}^{1}(\Omega)$,
$a(u, v):=\varepsilon(\nabla u, \nabla v)_{0, \Omega}+(\overrightarrow{\boldsymbol{\beta}} \cdot \nabla u, v)_{0, \Omega}+\gamma(u, v)_{0, \Omega}=(f, v)_{0, \Omega}$.

Advection-diffusion-reaction problem

Why did we choose the advection-diffusion-reaction problem?

Advection-diffusion-reaction problem

Why did we choose the advection-diffusion-reaction problem?

- The advection-diffusion-reaction problem can't be solved using the standard lightning Laplace method.

Advection-diffusion-reaction problem

Why did we choose the advection-diffusion-reaction problem?

- The advection-diffusion-reaction problem can't be solved using the standard lightning Laplace method.
- We can easily return to the Laplace problem and diffusion-reaction problem changing the parameter γ and $\overrightarrow{\boldsymbol{\beta}}$.

Advection-diffusion-reaction problem

Why did we choose the advection-diffusion-reaction problem?

- The advection-diffusion-reaction problem can't be solved using the standard lightning Laplace method.
- We can easily return to the Laplace problem and diffusion-reaction problem changing the parameter γ and $\overrightarrow{\boldsymbol{\beta}}$.
- The lightning VEM method will allow for a simpler construction than the vanilla VEM.

Conforming Galerkin method

We first consider a conforming discrete space, i.e.

$$
V_{h}=\left\langle\phi_{1}, \ldots, \phi_{N}\right\rangle \subset H_{0}^{1}(\Omega), \quad \operatorname{dim}\left(V_{h}\right)=N
$$

Conforming Galerkin method

We first consider a conforming discrete space, i.e.

$$
V_{h}=\left\langle\phi_{1}, \ldots, \phi_{N}\right\rangle \subset H_{0}^{1}(\Omega), \quad \operatorname{dim}\left(V_{h}\right)=N
$$

We then proceed to consider the discrete variational problem, find $u_{h} \in V_{h}$ such that for all $j=1, \ldots, N$

$$
a\left(u_{h}, \phi_{j}\right)=\sum_{i=1}^{N} \overrightarrow{\boldsymbol{U}}_{i} a\left(\phi_{i}, \phi_{j}\right)=\left(f, \phi_{j}\right)_{0, \Omega},
$$

Conforming Galerkin method

We first consider a conforming discrete space, i.e.

$$
V_{h}=\left\langle\phi_{1}, \ldots, \phi_{N}\right\rangle \subset H_{0}^{1}(\Omega), \quad \operatorname{dim}\left(V_{h}\right)=N
$$

We then proceed to consider the discrete variational problem, find $u_{h} \in V_{h}$ such that for all $j=1, \ldots, N$

$$
a\left(u_{h}, \phi_{j}\right)=\sum_{i=1}^{N} \overrightarrow{\boldsymbol{U}}_{i} a\left(\phi_{i}, \phi_{j}\right)=\left(f, \phi_{j}\right)_{0, \Omega},
$$

We are left solving a linear system to find the value of the coefficients $\overrightarrow{\boldsymbol{U}}_{i}$, representing u_{h} in the chosen base, i.e.

$$
A \overrightarrow{\boldsymbol{U}}=\overrightarrow{\boldsymbol{F}}, \quad u_{h}=\sum_{i=1}^{N} \overrightarrow{\boldsymbol{U}}_{i} \phi_{i} .
$$

Finite element method

To solve the previously mentioned problem we turn to a finite element $\left(K, V_{h}(K), \Sigma\right)$ discretisation, i.e.

Finite element method

To solve the previously mentioned problem we turn to a finite element $\left(K, V_{h}(K), \Sigma\right)$ discretisation, i.e.

- We construct a tessellation \mathcal{T}_{h} of the domain Ω, K is a prototypical element of the tessellation.

Finite element method

To solve the previously mentioned problem we turn to a finite element $\left(K, V_{h}(K), \Sigma\right)$ discretisation, i.e.

- We construct a tessellation \mathcal{T}_{h} of the domain Ω, K is a prototypical element of the tessellation.
- We consider a discrete polynomial space $V_{h}(K)$ on each element.

Finite element method

To solve the previously mentioned problem we turn to a finite element $\left(K, V_{h}(K), \Sigma\right)$ discretisation, i.e.

- We construct a tessellation \mathcal{T}_{h} of the domain Ω, K is a prototypical element of the tessellation.
- We consider a discrete polynomial space $V_{h}(K)$ on each element.

- We determine the coefficient of the finite element solution using the evaluation of element of $V_{h}(K)$ using the degrees of freedom $\Sigma \subset V_{h}(K)^{*}$.

Finite element method

To solve the previously mentioned problem we turn to a finite element $\left(K, V_{h}(K), \Sigma\right)$ discretisation, i.e.

- We construct a tessellation \mathcal{T}_{h} of the domain Ω, K is a prototypical element of the tessellation.
- We consider a discrete polynomial space $V_{h}(K)$ on each element.

- We determine the coefficient of the finite element solution using the evaluation of element of $V_{h}(K)$ using the degrees of freedom $\Sigma \subset V_{h}(K)^{*}$.
- We need to determine the connectivity of the DOF.

Failure point of the FEM: mesh types

Failure point of the FEM: mesh types

$V_{h}(K)=\langle 1, x, y\rangle$
The red DOF
ensures the continuity
across the blue edge, hence H^{1} conformity.

Failure point of the FEM: mesh types

Failure point of the FEM: mesh types

$V_{h}(K)=\langle 1, x, y\rangle$
The red DOF ensures the continuity across the blue edge, hence H^{1} conformity.

$V_{h}(K)=\langle 1, x, y, x y\rangle$
The
approximation property of the
space \mathbb{Q} are the same as the one of the space \mathbb{P}.

How can we deal with a general polygon ?

Failure point of the FEM: high conformity

Failure point of the FEM: high conformity

The red DOF ensures the \mathcal{C}^{1} continuity across the blue edge, hence H^{2} conformity.

Failure point of the FEM: high conformity

The red DOF ensures the \mathcal{C}^{1} continuity
across the blue edge, hence H^{2} conformity.

On
Powell-Sabin splits, we can decrease the polynomial order to needed for \mathcal{C}^{1} conformity.

Failure point of the FEM: high conformity

The red DOF ensures the \mathcal{C}^{1} continuity
across the blue edge, hence H^{2} conformity.

On
Powell-Sabin
splits, we can decrease the polynomial order to needed for \mathcal{C}^{1} conformity.

The BrambleZalmal element is \mathcal{C}^{r} conforming, and requires degree $4 r+1$.

Free lunch: The virtual element method

The virtual element method is based on fixing the degrees of freedom we need on each element's edge and constructing basis functions that can be determined starting from these degrees of freedom.

Free lunch: The virtual element method

The virtual element method is based on fixing the degrees of freedom we need on each element's edge and constructing basis functions that can be determined starting from these degrees of freedom.

$k=1$

$k=2$

$k=3$

Free lunch: The virtual element method

The virtual element method is based on fixing the degrees of freedom we need on each element's edge and constructing basis functions that can be determined starting from these degrees of freedom.

$k=2$

$k=3$

$$
V_{h}(K):=\left\{v_{h} \in H^{1}(K): \Delta v_{h} \in \mathbb{P}_{k-2}(K) \text { and }\left.v_{h}\right|_{e} \in \mathbb{P}_{k}(e)\right\}
$$

The cashier is shouting at us !

The discrete variational problem, find $u_{h} \in V_{h}$ such that for all $j=1, \ldots, N$

$$
a\left(u_{h}, \phi_{j}\right)=\sum_{i=1}^{N} \overrightarrow{\boldsymbol{U}}_{i} a\left(\phi_{i}, \phi_{j}\right)=\left(f, \phi_{j}\right)_{0, \Omega},
$$

requires us to solve a Laplace problem on each element:

The cashier is shouting at us !

The discrete variational problem, find $u_{h} \in V_{h}$ such that for all $j=1, \ldots, N$

$$
a\left(u_{h}, \phi_{j}\right)=\sum_{i=1}^{N} \overrightarrow{\boldsymbol{U}}_{i} a\left(\phi_{i}, \phi_{j}\right)=\left(f, \phi_{j}\right)_{0, \Omega},
$$

requires us to solve a Laplace problem on each element:

$$
\begin{aligned}
\Delta \phi_{i} & =\omega_{i} \text { in } K \\
\phi_{i} & =\varphi_{i} \text { on } \partial K .
\end{aligned}
$$

where ω_{i} are the basis function corresponding to the internal DOF and φ_{i} are the basis function corresponding to the edge DOF.

We run away: The projector operator

We can construct the entries of the matrix A using only the DOF!

$$
\begin{gathered}
\Pi_{k}^{\nabla, K}: V_{h}(K) \rightarrow \mathbb{P}_{k}(K), \\
\int_{K} \nabla p_{k} \cdot \nabla\left(\phi-\Pi_{k}^{\nabla, K} \phi\right) \mathrm{d} K=0, \quad \int_{\partial K}\left(\phi-\Pi_{k}^{\nabla, K} \phi\right) \mathrm{d} s=0 .
\end{gathered}
$$

We run away: The projector operator

We can construct the entries of the matrix A using only the DOF!

$$
\begin{gathered}
\Pi_{k}^{\nabla, K}: V_{h}(K) \rightarrow \mathbb{P}_{k}(K), \\
\int_{K} \nabla p_{k} \cdot \nabla\left(\phi-\Pi_{k}^{\nabla, K} \phi\right) \mathrm{d} K=0, \quad \int_{\partial K}\left(\phi-\Pi_{k}^{\nabla, K} \phi\right) \mathrm{d} s=0 .
\end{gathered}
$$

Now we break the bilinear form on each element of the tessellation, and starting from the diffusion term observe:

$$
\begin{aligned}
\varepsilon \sum_{K \in \mathcal{T}_{h}}\left(\nabla \phi_{i}, \nabla \phi_{j}\right)_{0, K} & =\varepsilon \sum_{K \in \mathcal{T}_{h}}\left(\nabla \Pi_{k}^{\nabla, K} \phi_{i}, \nabla \Pi_{k}^{\nabla, K} \phi_{j}\right)_{0, K} \\
& +\varepsilon \sum_{K \in \mathcal{T}_{h}}\left(\nabla\left(I-\Pi_{k}^{\nabla, K}\right) \phi_{i}, \nabla\left(I-\Pi_{k}^{\nabla, K}\right) \phi_{j}\right)_{0, K}
\end{aligned}
$$

We run away: The projector operator

We can construct the entries of the matrix A using only the DOF!

$$
\begin{gathered}
\Pi_{k}^{\nabla, K}: V_{h}(K) \rightarrow \mathbb{P}_{k}(K), \\
\int_{K} \nabla p_{k} \cdot \nabla\left(\phi-\Pi_{k}^{\nabla, K} \phi\right) \mathrm{d} K=0, \quad \int_{\partial K}\left(\phi-\Pi_{k}^{\nabla, K} \phi\right) \mathrm{d} s=0 .
\end{gathered}
$$

Now we break the bilinear form on each element of the tessellation, and starting from the diffusion term observe:

$$
\begin{aligned}
\varepsilon \sum_{K \in \mathcal{T}_{h}}\left(\nabla \phi_{i}, \nabla \phi_{j}\right)_{0, K} & =\varepsilon \sum_{K \in \mathcal{T}_{h}}\left(\nabla \Pi_{k}^{\nabla, K} \phi_{i}, \nabla \Pi_{k}^{\nabla, K} \phi_{j}\right)_{0, K} \\
& +\varepsilon \sum_{K \in \mathcal{T}_{h}} S\left(\left(I-\Pi_{k}^{\nabla, K}\right) \phi_{i},\left(I-\Pi_{k}^{\nabla, K}\right) \phi_{j}\right)_{0, K}
\end{aligned}
$$

You end up in jail: Failure point of the VEM

You end up in jail: Failure point of the VEM

- How do we construct the stabilization term $S(\cdot, \cdot)$ for the previous equation ?

You end up in jail: Failure point of the VEM

- How do we construct the stabilization term $S(\cdot, \cdot)$ for the previous equation ?
- Constructing a projector operator for the reaction term is hard, we will have to resort to a different definition of the
 virtual element space.

You end up in jail: Failure point of the VEM

- How do we construct the stabilization term $S(\cdot, \cdot)$ for the previous equation ?
- Constructing a projector operator for the reaction term is hard, we will have to resort to a different definition of the
 virtual element space.
- Adding a projector operator for the advection term naively will result in a non-skew-symmetric system!

You end up in jail: Failure point of the VEM

- How do we construct the stabilization term $S(\cdot, \cdot)$ for the previous equation ?
- Constructing a projector operator for the reaction term is hard, we will have to resort to a different definition of the
 virtual element space.
- Adding a projector operator for the advection term naively will result in a non-skew-symmetric system!
- We only have access to the value of the DOF. How do we access the point-wise value of the solution?

TESCO Budget meal: The lightning VEM

Our idea is to solve cheaply and accurately solve the Laplace problem,

$$
\begin{aligned}
\Delta \phi_{i} & =\omega_{i} \text { in } K \\
\phi_{i} & =\varphi_{i} \text { on } \partial K .
\end{aligned}
$$

in order to generate basis functions for the VEM.

TESCO Budget meal: The lightning VEM

Our idea is to solve cheaply and accurately solve the Laplace problem,

$$
\begin{aligned}
\Delta \phi_{i} & =\omega_{i} \text { in } K \\
\phi_{i} & =\varphi_{i} \text { on } \partial K .
\end{aligned}
$$

in order to generate basis functions for the VEM. We will use the lightning Laplace scheme, this will allow also for:

TESCO Budget meal: The lightning VEM

Our idea is to solve cheaply and accurately solve the Laplace problem,

$$
\begin{aligned}
\Delta \phi_{i} & =\omega_{i} \text { in } K \\
\phi_{i} & =\varphi_{i} \text { on } \partial K .
\end{aligned}
$$

in order to generate basis functions for the VEM. We will use the lightning Laplace scheme, this will allow also for:

- high order conformity, introducing an additional variable i.e. $\eta_{i}=-\Delta \phi_{i}$ we can use lightning approximation to solve the bi-harmonic problem.

TESCO Budget meal: The lightning VEM

Our idea is to solve cheaply and accurately solve the Laplace problem,

$$
\begin{aligned}
\Delta \phi_{i} & =\omega_{i} \text { in } K \\
\phi_{i} & =\varphi_{i} \text { on } \partial K .
\end{aligned}
$$

in order to generate basis functions for the VEM. We will use the lightning Laplace scheme, this will allow also for:

- high order conformity, introducing an additional variable i.e.
$\eta_{i}=-\Delta \phi_{i}$ we can use lightning approximation to solve the bi-harmonic problem.
- curved mesh elements, resorting to the AAA method.

The lightning Laplace method

The idea behind the lightning Laplace method is to construct a solution to the Laplace equation of the form,

$$
\hat{\phi}_{i}=\operatorname{Re}\left\{\sum_{j=0}^{N_{P}} \frac{a_{j}}{z-z_{j}}+\sum_{j=0}^{N_{Z}} b_{j}\left(z-z_{*}\right)^{j}\right\}
$$

where $\left\{z_{j}\right\}_{j=1}^{N_{P}}$ and z_{*} are points in the complex plane and Re denotes the real part of a complex number.

Non-Conforming Galerkin methods

We know that the basis function $\hat{\phi}_{i, K_{1}}$ and $\hat{\phi}_{i, K_{2}}$ corresponding to the i-th vertex and constructed respectively on K_{1} and K_{2}, match at the degrees of freedom here denoted in red.

Non-Conforming Galerkin methods

We know that the basis function $\hat{\phi}_{i, K_{1}}$ and $\hat{\phi}_{i, K_{2}}$ corresponding to the i-th vertex and constructed respectively on K_{1} and K_{2}, match at the degrees of freedom here denoted in red.

Yet we have no guarantee that $\hat{\phi}_{1}$ and $\hat{\phi}_{2}$ are continuous along the blue edge.

Non-Conforming Galerkin methods

We begin introducing a larger space, i.e. $V=H_{0}^{1}(\Omega)+V_{h}$ and observing that the broken bilinear form has meaning on V, i.e.

$$
\begin{gathered}
a_{h}: V \times V \rightarrow \mathbb{R} \\
a_{h}(u, v)=\sum_{K \in \mathcal{T}_{h}} \varepsilon(\nabla u, \nabla v)_{0, K}+((\overrightarrow{\boldsymbol{\beta}} \cdot \nabla u), \nabla v)_{0, K}+\gamma(u, v)_{0, K}
\end{gathered}
$$

Non-Conforming Galerkin methods

We begin introducing a larger space, i.e. $V=H_{0}^{1}(\Omega)+V_{h}$ and observing that the broken bilinear form has meaning on V, i.e.

$$
\begin{gathered}
a_{h}: V \times V \rightarrow \mathbb{R} \\
a_{h}(u, v)=\sum_{K \in \mathcal{T}_{h}} \varepsilon(\nabla u, \nabla v)_{0, K}+((\overrightarrow{\boldsymbol{\beta}} \cdot \nabla u), \nabla v)_{0, K}+\gamma(u, v)_{0, K}
\end{gathered}
$$

- When we consider $a_{h}(\cdot, \cdot)$ on $H_{0}^{1}(\Omega)$ we have that $a_{h}(\cdot, \cdot)=a(\cdot, \cdot)$

Non-Conforming Galerkin methods

We begin introducing a larger space, i.e. $V=H_{0}^{1}(\Omega)+V_{h}$ and observing that the broken bilinear form has meaning on V, i.e.

$$
\begin{gathered}
a_{h}: V \times V \rightarrow \mathbb{R} \\
a_{h}(u, v)=\sum_{K \in \mathcal{T}_{h}} \varepsilon(\nabla u, \nabla v)_{0, K}+((\overrightarrow{\boldsymbol{\beta}} \cdot \nabla u), \nabla v)_{0, K}+\gamma(u, v)_{0, K}
\end{gathered}
$$

- When we consider $a_{h}(\cdot, \cdot)$ on $H_{0}^{1}(\Omega)$ we have that $a_{h}(\cdot, \cdot)=a(\cdot, \cdot)$
- Thanks to the DOF we know $a_{h}: V \times V \rightarrow \mathbb{R}$ is a scalar product, so we can apply Lax-Milgram lemma to prove the existence of discrete solution.

A priori error estimates

A priori error estimates

Assuming we are solving the local Laplace accurately enough we can prove the following a priori error estimates,

$$
\begin{aligned}
\left\|u-\hat{u}_{h}\right\|_{h} & \leq C(\Omega) h^{\max \{k, m-1\}}|u|_{H^{m}(\Omega)} \\
& +\|f\|_{L^{2}(\Omega)} \hat{C} \varepsilon .
\end{aligned}
$$

A priori error estimates

A priori error estimates

Assuming we are solving the local Laplace accurately enough we can prove the following a priori error estimates,

$$
\begin{aligned}
\left\|u-\hat{u}_{h}\right\|_{h} & \leq C(\Omega) h^{\max \{k, m-1\}}|u|_{H^{m}(\Omega)} \\
& +\|f\|_{L^{2}(\Omega)} \hat{C} \varepsilon .
\end{aligned}
$$

where ε corresponds to the tolerance of our local lightning Laplace solve with respect to the $H^{\frac{1}{2}}(\partial K)$ norm.

Conclusion

- The lightning VEM allows us to work on any polygon mesh.

Conclusion

- The lightning VEM allows us to work on any polygon mesh.
- The lightning VEM allows us to work with arbitrary conformity.

Conclusion

- The lightning VEM allows us to work on any polygon mesh.
- The lightning VEM allows us to work with arbitrary conformity.
- The lightning VEM allows us to access the point-wise value of the solution.

Conclusion

- The lightning VEM allows us to work on any polygon mesh.
- The lightning VEM allows us to work with arbitrary conformity.
- The lightning VEM allows us to access the point-wise value of the solution.
- The lightning VEM will require neither a stabilization term nor projection operators.

Conclusion

- The lightning VEM allows us to work on any polygon mesh.
- The lightning VEM allows us to work with arbitrary conformity.
- The lightning VEM allows us to access the point-wise value of the solution.
- The lightning VEM will require neither a stabilization term nor projection operators.
- The lightning VEM can be applied to a wide range of PDE.

Conclusion

- The lightning VEM allows us to work on any polygon mesh.
- The lightning VEM allows us to work with arbitrary conformity.
- The lightning VEM allows us to access the point-wise value of the solution.
- The lightning VEM will require neither a stabilization term nor projection operators.
- The lightning VEM can be applied to a wide range of PDE.

> Thank you for your attention!

Yes but: Performance of the Lightning VEM

Table: A comparison between a vanilla VEM implementation and the lightning VEM implementation, of the average time (in seconds) taken by the assembly of the local matrix for different numbers of elements.

N	4	16	64	256	1024
Vanilla	$4.61 \mathrm{e}-03$	$2.03 \mathrm{e}-03$	$2.20 \mathrm{e}-03$	$1.10 \mathrm{e}-03$	$1.03 \mathrm{e}-03$
Lightning	$3.67 \mathrm{e}-03$	$3.22 \mathrm{e}-03$	$6.07 \mathrm{e}-03$	$9.15 \mathrm{e}-03$	$1.84 \mathrm{e}-02$

