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Advection-diffusion-reaction problem

The advection-diffusion-reaction equation models the
concentration u : Ω ⊂ R2 → R of a substance under:

▶ diffusion, the movement of a chemical species according to
the concentration gradient without bulk motion. The
diffusion coefficient ε, is the proportionality constant
between the species flux and the concentration gradient.

▶ advection, the transport of the chemical species by bulk
motion of a fluid, of velocity β⃗.

▶ reaction, the source or sink of chemical species depending
up on the concentration of the chemical species, by the
constant γ.

ε∆u + β⃗ · ∇u + γu = f

▶ f represent a constant source or sink of chemical species.
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Advection-diffusion-reaction problem

Multiplying by a test function and integrating by parts we find the
weak formulation of the advection-diffusion-reaction problem,
i.e. find u ∈ H1

0 (Ω) such that for all v ∈ H1
0 (Ω),

ε

∫
Ω
∇u · ∇v d x⃗ +

∫
Ω
(β⃗ · ∇u)v d x⃗ + γ

∫
Ω
uv d x⃗ =

∫
Ω
fv d x⃗ .

We can rewrite this problem in compact form, using the bilinear
form a(·, ·) : H1

0 (Ω)× H1
0 (Ω) → R, i.e. find u ∈ H1

0 (Ω) such that
for all v ∈ H1

0 (Ω),

a(u, v) := ε (∇u,∇v)0,Ω+
(
β⃗ · ∇u, v

)
0,Ω

+γ (u, v)0,Ω = (f , v)0,Ω .
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Advection-diffusion-reaction problem

Why did we choose the advection-diffusion-reaction problem?

▶ The advection-diffusion-reaction problem can’t be solved
using the standard lightning Laplace method.

▶ We can easily return to the Laplace problem and
diffusion-reaction problem changing the parameter γ and β⃗.

▶ The lightning VEM method will allow for a simpler
construction than the vanilla VEM.
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Conforming Galerkin method

We first consider a conforming discrete space, i.e.

Vh = ⟨ϕ1, . . . , ϕN⟩ ⊂ H1
0 (Ω), dim(Vh) = N

We then proceed to consider the discrete variational problem,
find uh ∈ Vh such that for all j = 1, . . . ,N

a(uh, ϕj) =
N∑
i=1

U⃗ ia(ϕi , ϕj) = (f , ϕj)0,Ω,

We are left solving a linear system to find the value of the
coefficients U⃗ i , representing uh in the chosen base, i.e.

AU⃗ = F⃗ , uh =
N∑
i=1

U⃗ iϕi .
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Finite element method

To solve the previously mentioned problem we
turn to a finite element (K ,Vh(K ),Σ)
discretisation, i.e.

▶ We construct a tessellation Th of the
domain Ω, K is a prototypical element of
the tessellation.

▶ We consider a discrete polynomial space
Vh(K ) on each element.

▶ We determine the coefficient of the finite element solution using
the evaluation of element of Vh(K ) using the degrees of
freedom Σ ⊂ Vh(K )∗.

▶ We need to determine the connectivity of the DOF.

NA Group Seminar Lightning Virtual Elements Method 6



Finite element method

To solve the previously mentioned problem we
turn to a finite element (K ,Vh(K ),Σ)
discretisation, i.e.

▶ We construct a tessellation Th of the
domain Ω, K is a prototypical element of
the tessellation.

▶ We consider a discrete polynomial space
Vh(K ) on each element.

▶ We determine the coefficient of the finite element solution using
the evaluation of element of Vh(K ) using the degrees of
freedom Σ ⊂ Vh(K )∗.

▶ We need to determine the connectivity of the DOF.

NA Group Seminar Lightning Virtual Elements Method 6



Finite element method

To solve the previously mentioned problem we
turn to a finite element (K ,Vh(K ),Σ)
discretisation, i.e.

▶ We construct a tessellation Th of the
domain Ω, K is a prototypical element of
the tessellation.

▶ We consider a discrete polynomial space
Vh(K ) on each element.

▶ We determine the coefficient of the finite element solution using
the evaluation of element of Vh(K ) using the degrees of
freedom Σ ⊂ Vh(K )∗.

▶ We need to determine the connectivity of the DOF.

NA Group Seminar Lightning Virtual Elements Method 6



Finite element method

To solve the previously mentioned problem we
turn to a finite element (K ,Vh(K ),Σ)
discretisation, i.e.

▶ We construct a tessellation Th of the
domain Ω, K is a prototypical element of
the tessellation.

▶ We consider a discrete polynomial space
Vh(K ) on each element.

▶ We determine the coefficient of the finite element solution using
the evaluation of element of Vh(K ) using the degrees of
freedom Σ ⊂ Vh(K )∗.

▶ We need to determine the connectivity of the DOF.

NA Group Seminar Lightning Virtual Elements Method 6



Finite element method

To solve the previously mentioned problem we
turn to a finite element (K ,Vh(K ),Σ)
discretisation, i.e.

▶ We construct a tessellation Th of the
domain Ω, K is a prototypical element of
the tessellation.

▶ We consider a discrete polynomial space
Vh(K ) on each element.

▶ We determine the coefficient of the finite element solution using
the evaluation of element of Vh(K ) using the degrees of
freedom Σ ⊂ Vh(K )∗.

▶ We need to determine the connectivity of the DOF.

NA Group Seminar Lightning Virtual Elements Method 6



Failure point of the FEM: mesh types

Vh(K ) = ⟨1, x , y⟩

The red DOF
ensures the
continuity

across the blue
edge, hence H1

conformity.

Vh(K ) = ⟨1, x , y , xy⟩
The

approximation
property of the
space Q are the
same as the one
of the space P.

???

How can we deal
with a general
polygon ?
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Failure point of the FEM: high conformity

The red DOF
ensures the C1

continuity
across the blue
edge, hence H2

conformity.

On
Powell–Sabin
splits, we can
decrease the

polynomial order
to needed for C1

conformity.

The Bramble–
Zalmal

element is Cr

conforming,
and requires
degree 4r + 1.
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Free lunch: The virtual element method

The virtual element method is based on fixing the degrees of
freedom we need on each element’s edge and constructing basis
functions that can be determined starting from these degrees of
freedom.

k = 1 k = 2 k = 3

Vh(K ) :=
{
vh ∈ H1(K ) : ∆vh ∈ Pk−2(K ) and vh e ∈ Pk(e)

}
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The cashier is shouting at us !

The discrete variational problem, find uh ∈ Vh such that for all
j = 1, . . . ,N

a(uh, ϕj) =
N∑
i=1

U⃗ ia(ϕi , ϕj) = (f , ϕj)0,Ω,

requires us to solve a Laplace problem on each element:

∆ϕi = ωi in K ,

ϕi = φi on ∂K .

where ωi are the basis function corresponding to the internal DOF
and φi are the basis function corresponding to the edge DOF.
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We run away: The projector operator

We can construct the entries of the matrix A using only the DOF!

Π∇,K
k : Vh(K ) → Pk(K ),∫

K
∇ pk · ∇(ϕ− Π∇,K

k ϕ)dK = 0,

∫
∂K

(ϕ− Π∇,K
k ϕ)ds = 0 .

Now we break the bilinear form on each element of the
tessellation, and starting from the diffusion term observe:
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You end up in jail: Failure point of the VEM

▶ How do we construct the stabilization
term S(·, ·) for the previous equation ?

▶ Constructing a projector operator for the
reaction term is hard, we will have to
resort to a different definition of the
virtual element space.

▶ Adding a projector operator for the advection term naively will
result in a non-skew-symmetric system !

▶ We only have access to the value of the DOF. How do we
access the point-wise value of the solution ?
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TESCO Budget meal: The lightning VEM

Our idea is to solve cheaply and accurately solve the Laplace
problem,

∆ϕi = ωi in K ,

ϕi = φi on ∂K .

in order to generate basis functions for the VEM.

We will use the
lightning Laplace scheme, this will allow also for:

▶ high order conformity, introducing an additional variable i.e.
ηi = −∆ϕi we can use lightning approximation to solve the
bi-harmonic problem.

▶ curved mesh elements, resorting to the AAA method.
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The lightning Laplace method

The idea behind the lightning Laplace
method is to construct a solution to the
Laplace equation of the form,

ϕ̂i = Re

{ NP∑
j=0

aj
z − zj

+

NZ∑
j=0

bj(z − z∗)
j

}
,

where {zj}NP
j=1 and z∗ are points in the

complex plane and Re denotes the real part of
a complex number.
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Non-Conforming Galerkin methods

We know that the basis function ϕ̂i ,K1 and ϕ̂i ,K2 corresponding to
the i-th vertex and constructed respectively on K1 and K2, match
at the degrees of freedom here denoted in red.

K1 K2

Yet we have no guarantee that ϕ̂1 and ϕ̂2 are continuous along the
blue edge.
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Non-Conforming Galerkin methods

We begin introducing a larger space, i.e. V = H1
0 (Ω) + Vh and

observing that the broken bilinear form has meaning on V , i.e.

ah : V × V → R

ah(u, v) =
∑
K∈Th

ε(∇u,∇v)0,K +
(
(β⃗ · ∇u),∇v

)
0,K

+ γ(u, v)0,K

▶ When we consider ah(·, ·) on H1
0 (Ω) we have that

ah(·, ·) = a(·, ·)
▶ Thanks to the DOF we know ah : V × V → R is a scalar

product, so we can apply Lax-Milgram lemma to prove the
existence of discrete solution.

NA Group Seminar Lightning Virtual Elements Method 16



Non-Conforming Galerkin methods

We begin introducing a larger space, i.e. V = H1
0 (Ω) + Vh and

observing that the broken bilinear form has meaning on V , i.e.

ah : V × V → R

ah(u, v) =
∑
K∈Th

ε(∇u,∇v)0,K +
(
(β⃗ · ∇u),∇v

)
0,K

+ γ(u, v)0,K

▶ When we consider ah(·, ·) on H1
0 (Ω) we have that

ah(·, ·) = a(·, ·)

▶ Thanks to the DOF we know ah : V × V → R is a scalar
product, so we can apply Lax-Milgram lemma to prove the
existence of discrete solution.

NA Group Seminar Lightning Virtual Elements Method 16



Non-Conforming Galerkin methods

We begin introducing a larger space, i.e. V = H1
0 (Ω) + Vh and

observing that the broken bilinear form has meaning on V , i.e.

ah : V × V → R

ah(u, v) =
∑
K∈Th

ε(∇u,∇v)0,K +
(
(β⃗ · ∇u),∇v

)
0,K

+ γ(u, v)0,K

▶ When we consider ah(·, ·) on H1
0 (Ω) we have that

ah(·, ·) = a(·, ·)
▶ Thanks to the DOF we know ah : V × V → R is a scalar

product, so we can apply Lax-Milgram lemma to prove the
existence of discrete solution.
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A priori error estimates

A priori error estimates

Assuming we are solving the local
Laplace accurately enough we can prove
the following a priori error estimates,

∥u − ûh∥h ≤ C (Ω)hmax{k,m−1}|u|Hm(Ω)

+ ∥f ∥L2(Ω)Ĉε.

where ε corresponds to the tolerance of
our local lightning Laplace solve with

respect to the H
1
2 (∂K ) norm.
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Conclusion

▶ The lightning VEM allows us to work on any polygon mesh.

▶ The lightning VEM allows us to work with arbitrary
conformity.

▶ The lightning VEM allows us to access the point-wise value
of the solution.

▶ The lightning VEM will require neither a stabilization term
nor projection operators.

▶ The lightning VEM can be applied to a wide range of PDE.

Thank you for your attention !
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Yes but: Performance of the Lightning VEM

Table: A comparison between a vanilla VEM implementation and the
lightning VEM implementation, of the average time (in seconds) taken by
the assembly of the local matrix for different numbers of elements.

N 4 16 64 256 1024

Vanilla 4.61e-03 2.03e-03 2.20e-03 1.10e-03 1.03e-03
Lightning 3.67e-03 3.22e-03 6.07e-03 9.15e-03 1.84e-02
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