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Introduction

Partial di�erential equations on domains presenting point singularities have always been of
interest for applied mathematicians; this interest stems from the di�culty to prove regularity
results for non-smooth domains, which have important consequences in the numerical solution
of partial di�erential equations. In my thesis I address those consequences on a particular
family of numerical schemes, known as penalty �nite element methods. In particular the aim
of my thesis is not only to introduce the penalty �nite element methods and their a priori error
analysis but also to provide a priori error estimates that show that under suitable conditions
penalty �nite element methods are not inferior to conforming �nite element methods. I am
also going to show numerical evidence that the penalty �nite element methods outperform
conforming �nite elements method in domains presenting a corner singularity provided that
we choose the correct penalisation factor. I would like to keep my introduction short and
just provide the reader with an account of the contents of the various chapters in order to
allow for an �on-demand� reading. In the �rst chapter of my thesis I address the continuos
problem on singular domains, in particular I limited my self to the Poisson equation. In the
�rst section I address the connection between the Poisson equation with di�erent boundary
conditions and energy minimization principles, in particular I describe R. Courant's point of
view which will serve as a moral foundation for the penalty �nite element method. In the next
section I introduce the notion of Sobolev spaces and various existence and uniqueness results
in the Sobolev space context; furthermore I will shown di�erent �avours of proof for these
results and address some facts that might concern a reader more familiar with well known
results in functional analysis. In the last section I introduce the reader to classical results in
regularity theory of elliptic partial di�erential equations and to the seminal work by P. Grisvard
on elliptic regularity in non smooth domains. I conclude with detailed computations regarding
a speci�c Pacman like domain, that will accompany the reader throughout the entirety of
my thesis in order to make the idea presented clearer. In the second chapter of my thesis I
will introduce the reader to the notion of Muckenhoupt weighted Sobolev spaces, I will then
recast the seminal work by V. Kondratiev and V. G. Maz'ya in the framework of Muckenhoupt
weighted Sobolev spaces and take advantage of this connection in order to show the existence
of a variety of Poincaré type inequalities for Maz'ya-Sobolev spaces with di�erent metrics.
Last I will present an interpolant developed by R. Nochetto and I will limit myself to the case
of piece-wise linear polynomials. I will later on make use of the connection between Maz'ya-
Sobolev and Muckenhoupt weighted Sobolev spaces to discuss the approximation of functions
in Maz'ya-Sobolev spaces by piece-wise linear polynomials. In the last chapter I will begin
giving an overview of di�erent �nite element methods that can be used to overcome the lack in
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regularity cased by the non smoothness of the domain we are working with. Next I will discuss
in more detail the a priori error estimates for conforming �nite element methods in the context
of domains presenting point singularities. I will later introduce the reader to penalty �nite
element methods and apply techniques that have been used in the context of smooth domains
but with singular data in order to show a priori error estimates for penalty �nite element in
point singular domains. Finally, I'm going to redirect the reader to some numerical results
presented in the Appendix and discuss the impossibility to prove an a priori error estimate
that explains the super convergence observed by means of a duality argument even if such
duality argument is carried out in Muckenhoupt weighted Sobolev spaces. Last I will present
to the reader a Petrov-Galerkin analysis that allows to prove a priori error estimate in the
norm associated with the Maz'ya-Sobolev spaces extending the usual results to penalty �nite
element.



1

The Poisson Equation

Throughout my thesis I will focus my attention on a single partial di�erential equation (PDE),
the Poisson equation. The reasons that brought to this decision are the fact that the Poisson
equation can be considered as a representative �toy� problem within the class of elliptic partial
di�erential equations with constants coe�cients and in my opinion the ideas that I will here
present will result clearer to the reader if only the Poisson equation is considered.
Given a domain Ω ⊂ Rd and a smooth enough data f : Ω → R the Poisson equation, consists
in �nding a smooth enough function u : Ω → R such that

−∆u = −
d∑
i=1

∂2xiu = f in Ω 1. (1.1)

Later in this chapter we will discuss in more detail the notion of �enough� smoothness and
what does this entail for the meaning of the above equality sign. To begin our study of the
Poisson equation we assume that f is a twice di�erentiable function with compact support,
i.e. f ∈ C2

c (Ω), therefore it seems natural to ask for u to be at least twice di�erentiable, i.e.
u ∈ C2(Ω). In this context it is clear what equation (1.1) means, u is a twice di�erentiable
function such that for all x in Ω the trace of the Hessian of u evaluated at x is equal to the
value of the data f at the point x. The �rst question that comes to mind when dealing with
any kind of equation, is what are the necessary and su�cient conditions in order for a solution
to exists and be unique ? In other words is the problem of �nding a solution for equation (1.1)
well posed ? Indeed if we assume that Ω = Rd then equation (1.1) is well posed.

Theorem 0.1. Let f ∈ C2
c (Rd), then (1.1) has an unique solution u : Rd → R, furthermore

u ∈ C2(Rd).

Proof. Providing the reader with a full proof of this result would be out of the scope of my
thesis but a fully detailed proof can be found in [47], Chapter 2. ut

We will now drop the assumption that Ω is the full Rd favouring a less restrictive hypothesis,
i.e. Ω ⊂ Rd open, bounded and with smooth boundary. If we consider equation (1.1) without
any additional hypotheses we can easily �nd counterexamples to the fact that the Poisson
equation is well posed. For instance since constants belong to the kernel of the Laplacian
operator, if u is a solution of (1.1) then any function of the form

1 We follow [47] convention to use the minus sign in front of the Laplacian operator.
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v : Ω → R

x 7→ u(x) + C

with C ∈ R is still a solution of (1.1). In order to obtain a well posed equation we study the
system of equations, that is known as the Dirichlet problem for the Poisson equation, i.e.−∆u = f in Ω,

u = g on ∂Ω.
(1.2)

Once the Dirichlet problem has been introduced it is possible to prove that under similar
assumptions as in Theorem 0.1, problem (1.2) is well posed.

Theorem 0.2. Let Ω ⊂ Rn be open, bounded, with smooth boundary, f ∈ C1(Ω) bounded and
g ∈ C0(∂Ω), then (1.2) has a unique solution u : Ω → R, furthermore u ∈ C2(Ω).

Proof. The reader interested in the proof of this result can �nd it in [54], Chapter 4. ut

Remark 0.3. The reader might be tempted to relax furthermore the hypothesis imposed on
the data, and this attempt might be successful, in particular we can ask for the data to be
bounded and locally Hölder continuous and still retrieve C2 solution, the proof of such a result
can be found in [54], Chapter 4. Nevertheless it will be impossible to take a C0 data, a counter
example can be found in [62], Chapter 3.

1 Calculus of Variations

In this section I will elaborate on the connections between the solution of the Poisson equation
and the minimization of energy functionals. In particular I will focus on the problem of equilib-
rium and on the depiction of rigid boundary conditions as a limiting case of natural boundary
conditions. The view point presented here comes from an article by R. Courant that not only
considers problem of equilibrium but also of vibration, [31]. References for a reader interested
in a more detailed account of the ideas presented in this section are [47] and [54]. Let us begin
by considering the homogeneous Dirichlet problem, i.e.−∆u = 0 in Ω,

u = 0 on ∂Ω.
(1.3)

In the previous section I redirected the reader interested in a proof of Theorem 0.2 to [54], but
now I would like to elaborate on a particular proof for the uniqueness of the solution of the
above equation, known as the energy method. Let's assume that u1, u2 are two solutions of
(1.3), then by linearity we know that also the di�erence between the two solutions is a solution
of (1.3), in particular if we de�ne δ := u1 − u2 then δ is a solution of (1.3):
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δ = 0 on ∂Ω.

If one multiplies the �rst equation above by 1
2
δ and integrates by parts, the resulting equations

will give us uniqueness,

−1

2

∫
Ω

δ∆δ dx =
1

2

∫
Ω

|∇δ|2 dx = 0. (1.4)

In fact we know from Theorem 0.2 that ∇δ : Ω → R is a continuous function and therefore
(1.4) give us ∇δ ≡ 0. Last if we combine the fact that δ has null gradient with the fact that
δ is null along the boundary we get δ ≡ 0, which means our two solutions u1, u2 of (1.3) are
identical everywhere. As previously mentioned this method to prove uniqueness is known as
the energy method, because the quantity obtained in (1.4) is known as the Dirichlet energy
of δ : Ω → R, and will be here called I(δ),

I : C1
c (Ω)→ R,

u 7→ 1

2

∫
Ω

|∇u|2dx.

In the remaining part of this section I will elaborate on some of the properties of the Dirichlet
energy functional I and related energy functionals. In particular I will begin exploring the
connections between the minimization of the Dirichlet energy functional and the solution of
(1.3).

Theorem 1.1. The solution of (1.3) is the minimizers of the Dirichlet energy functional in
C2
c (Ω). Moreover the solution of (1.2) is the minimizer of the generalised Dirichlet energy

functional, i.e.

J0(·, f) =
1

2

∫
Ω

|∇·|2 dx−
∫
Ω

f · dx, (1.5)

in C2
C(Ω), provided enough smoothness is assumed on f : Ω → R, in particular we will here

work under the assumption that f ∈ C1(Ω).

Proof. Let us consider a generic v ∈ C1
c (Ω), multiply the �rst equation in (1.3) by (v− u) and

integrate by parts to obtain the following expression:

−
∫
Ω

(v − u)∆u dx = −
∫
Ω

v∆u− u∆u dx =

∫
Ω

∇v∇u dx−
∫
|∇u|2 dx = 0,

1

2

∫
Ω

|∇v|2 dx +
1

2

∫
Ω

|∇u|2 dx−
∫
Ω

|∇u|2 dx ≥ 0,

1

2

∫
Ω

|∇v|2 dx ≥ 1

2

∫
Ω

|∇u|2 dx, (1.6)

where Yang's inequality has been used to pass from the �rst to the second equation. Now since
we can obtain an expression as (1.6) for any v ∈ C1

C(Ω) then we have proven that the solution
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of the homogeneous Dirichlet problem is also a minimizer of the Dirichlet energy functional. If
we start from equation (1.2) rather then (1.3) and we proceed as above, we obtain the following:

−
∫
Ω

(v − u)∆u dx = −
∫
Ω

v∆u− u∆u dx =

∫
Ω

∇v∇u dx−
∫
|∇u|2 dx =

∫
Ω

(v − u)f dx,

1

2

∫
Ω

|∇v|2 dx +
1

2

∫
Ω

|∇u|2 dx−
∫
Ω

|∇u|2 dx ≥
∫
Ω

(v − u)f dx,

1

2

∫
Ω

|∇v|2 dx−
∫
Ω

fv dx ≥ 1

2

∫
Ω

|∇u|2 dx−
∫
Ω

fu dx,

ut
Theorem 1.2. The critical points of the generalised Dirichlet energy functional in C2

c (Ω) are
solutions of (1.2).

Proof. Let u be the minimizer of (1.5) and v ∈ C∞c (Ω) then we introduce the following auxiliary
function:

i : R→ R

τ 7→ J0(u+ τv, f) =
1

2

∫
Ω

|∇(u+ τv)|2 dx−
∫
Ω

f(u+ τv) dx

We notice that since u is the minimizer of (1.5) then it is also a critical point for τ and therefore
i′(0) = 0. Computing explicitly the derivative of i′(τ) we get,

i′(τ) =
1

2

∫
Ω

2(∇u · ∇v)dx−
∫
Ω

fv dx,

therefore from i′(0) = 0 and integrating by parts we get,∫
Ω

∇u∇v dx−
∫
Ω

fv dx = −
∫
Ω

∆uv dx−
∫
Ω

fv dx =

∫
Ω

(−∆u− f)vdx = 0. (1.7)

We conclude applying the fundamental lemma of calculus of variations and observing that the
boundary conditions are veri�ed because we searched for the minimizers u in C2

c (Ω). ut

I would like to draw the reader attention to the fact that in Theorem 1.2 we found that
(1.2) are precisely the Euler-Lagrange equations associated with the Lagrangian,

L : Ω × R× Rd → R

(x, u,∇u) 7→ |∇u|2.

In fact in the proof of Theorem 1.2 we showed that the critical points of the Hamiltonian action
for the above Lagrangian are the solution of (1.2), since in this case the Hamiltonian action
is precisely (1.5). Computing the second derivative of the Lagrangian the reader can easily
�nd out that the Hamiltonian action is a convex functional, in fact substituting p = Du and
q = Dv we have
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∂2pL(p) = 2 > 0,

L(θp + (1− θ)q) ≤ θL(p) + (1− θ)L(q),∫
Ω

|θ∇u+ (1− θ)∇v|2 dx ≤ θ

2

∫
Ω

|∇u|2 dx +
1− θ

2

∫
Ω

|∇v|2 dx,

J0

(
θu+ (1− θ)v

)
≤ θJ0(u) + (1− θ)J0(v). (1.8)

Since the Dirichlet energy is convex the solution to the Euler-Lagrange equations does not only
correspond the critical point of the Hamiltonian action but it is the minimizer of the Dirichlet
energy. The minimization result just proven �ts nicely with the principle of minimum energy
and with this principle in mind I would like to introduce a di�erent energy functional,

Jε(·, f) =
1

2

∫
Ω

|∇·|2 dx−
∫
Ω

f · dx + ε−1
∫
∂Ω

|·|2 ds. (1.9)

In fact the rational behind this energy functional is instead of imposing some boundary con-
dition in the minimizing class to impose a penalisation term on the boundary. We can easily
check that the above energy functional is convex, in fact following the same reasoning as before
with p = u and q = v we obtain,∫

∂Ω

|θu+ (1− θ)v|2 dx ≤ θ

2

∫
∂Ω

|u|2 dx +
1− θ

2

∫
∂Ω

|v|2 dx,

combining this last inequality with (1.8) we get that Jε(·) is convex,

Jε

(
θu+ (1− θ)v

)
≤ θJε(u) + (1− θ)Jε(v).

and therefore once again �nding the critical points of the above Hamiltonian action corresponds
to an energy minimization problem. Now given the connection we have seen before between
(1.2) and (1.5), it comes natural to wonder if there is a one to one correspondence between
the minimizers of (1.9) and the solution of a PDE. To answer this question we introduce the
following theorem.

Theorem 1.3. Given an u ∈ C2(Ω), Ω ⊂ R2 open set with a Lipschitz boundary the solution
of the partial di�erential equation

−∆u = f in Ω,

∂nu = −2ε−1u on ∂Ω, 2 (1.10)

is the minimizer of (1.9), in C2(Ω). Viceversa the minimizers of (1.10) in C2(Ω) are solutions
of (1.10).
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Proof. Let us consider v ∈ C2(Ω), then we multiply the �rst equation of (1.10) by (v− u) and
integrate by parts,

−
∫
Ω

(v − u)∆u dx =

∫
Ω

f(v − u) dx∫
Ω

∇u∇v dx−
∫
∂Ω

v∂nu ds−
∫
Ω

∇u∇u dx +

∫
∂Ω

u∂nu ds =

∫
Ω

fv −
∫
Ω

fu

now using the second equation in (1.10) and Yang's inequality we get,∫
Ω

∇u∇v dx + 2ε−1
∫
∂Ω

uv ds−
∫
Ω

∇u∇u dx + 2ε−1
∫
∂Ω

|u|2 ds =

∫
Ω

fv −
∫
Ω

fu,

1

2

∫
Ω

∇v∇v dx +
1

2

∫
Ω

∇u∇u dx + ε−1
∫
∂Ω

|u|2 ds+ ε−1
∫
∂Ω

|v|2 ds−
∫
Ω

∇u∇u dx

−2ε−1
∫
∂Ω

|u|2 ds ≥
∫
Ω

fv −
∫
Ω

fu,

1

2

∫
Ω

|∇v|2 dx + ε−1
∫
∂Ω

|v|2 ds−
∫
Ω

fv dx ≥ 1

2

∫
Ω

|∇u|2 dx + ε−1
∫
∂Ω

|u|2 ds−
∫
Ω

fu dx.

In order to prove the second part of this theorem we need to take a slightly more complicated
route then the one shown in Theorem 1.2. We begin as usual �xing v ∈ C∞(Ω) and introducing
the auxiliary functional,

j : R→ R,

τ 7→ Jε(u+ τv),

τ 7→ 1

2

∫
Ω

|∇u+ t∇v|2 dx−
∫
Ω

fu+ tfv dx + ε−1
∫
∂Ω

|u+ tv|2 dx.

Since we assumed that u is a minimizer of (1.9) we know that j′(0) = 0, i.e.

j′(t) =

∫
Ω

∇u∇v dx +

∫
Ω

|∇u|2 dx−
∫
Ω

fv dx + ε−1
∫
∂Ω

2tv2 ds+ ε−1
∫
∂Ω

2vu ds

j′(0) =

∫
Ω

∇u∇v dx−
∫
Ω

fv dx + 2ε−1
∫
∂Ω

vu ds = 0 ∀v ∈ C∞(Ω). (1.11)

Now we �x any ω ⊂ Ω and consider v ∈ C∞c (ω), then the above expression becomes,∫
ω

∇u∇v dx−
∫
ω

fv dx ∀v ∈ C∞(ω),

integrating by parts we arrive at,

2 I would like to warn the reader interested in the original view point by R. Courant, presented in [31], that given the
fact we adopted the convection to consider the negative Laplacian, as in [47], also the boundary conditions have the
been considered with a negative sign.
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−
∫
ω

v∆u dx−
∫
ω

fv dx ∀v ∈ C∞(ω).

From the previous expression varying arbitrarily ω ⊂ Ω and using the fundamental lemma of
calculus of variations we get that the minimizer of (1.9) solves −∆u = f in Ω. Therefore we are
left to deal with the boundary part of our energy functional which after integrating by parts
(1.11) becomes,∫

∂Ω

v∂nu ds+ 2ε−1
∫
∂Ω

vu ds =

∫
∂Ω

(
∂nu+ 2ε−1u

)
v = 0 ∀v ∈ C∞(Ω). (1.12)

In order to address this problem we extend the domain Ω to a larger domain Ωδ and consider
an open set ω ⊂ Ωδ that envelops a smooth portion of the boundary, Figure 1.1. We will now

Fig. 1.1: The below �gure depicts the idea behind the tubular neighbourhood variation in R2.

Ω

Ωδ

ω

consider an extension uδ of u on Ωδ which is identical to u|∂Ω∩ω on ω and observe that from
(1.12) it follows that,∫

∂Ω

v∂nuδ ds+ 2ε−1
∫
∂Ω

vuδ ds =

∫
∂Ω

(
∂nuδ + 2ε−1uδ

)
v = 0 ∀v ∈ C∞c (ω).

The above expression allows us to use once again the fundamental lemma of calculus of variation
in order to obtain ∂nuδ = −2ε−1uδ on ω and therefore on ∂nu = −2ε−1u on ∂Ω ∩ ω. Last we
observe that since the singularity has measure zero with respect to the boundary, then varying
ω arbitrarily along the boundary yields ∂nu = −2ε−1u on ∂Ω. ut

Remark 1.4. I would like to warn the readers to proceed with caution when dealing with the
above proof, in fact there are many technicals detail hidden for clarity. One among all is the
construction of the extension uδ, which might seem simple on a convex polygonal domain in R2

but gets more delicate when dealing with a Liptshiz boundary in R2. Discussing this in more
detail would go outside of the scope of my thesis, but I would like to mention that when dealing
with domains that have piecewise smooth boundary if u enjoys a radial symmetry with respect
to the singularity point along the boundary then uδ can still be constructed quite easily. In
particular we will deal later on with domain and u as the one previously described. A more
general result on the construction of uδ is the tubular neighbourhood Theorem; more detail
can be found in [36], Chapter 2.

We now have two di�erent PDEs, (1.10) which represent a natural constrain and (1.3) which
represents a rigid constraint. Furthermore the energy corresponding with (1.3), i.e. (1.5), is the
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limit as ε approaches zero of the energy corresponding to (1.10), i.e. (1.9). In particular this
suggests that we can view the rigid constraint as the limit of natural constraint, as the restoring
force of the constraint approaches in�nity. This corresponds to the physical idea behind a rigid
constraint. A careful reader at this point might be bothered, and with reasons, by the vague
concept of limit that has been used in this last paragraph; let me reassure this careful reader
that after introducing the notion of weak solution for the two problems, we will show that the
solution u0 to problem (1.3) is the limit of uε, the solution of (1.10), as ε→ 0, with respect to
a certain norm.

Remark 1.5. An even more careful reader might feel deceived that while at the beginning of
this paragraph we try to convey the idea of convergence of energy functionals, we then plan
to formalize this notion by the converge of the energy minimizers rather then in terms of the
functionals itself. I will address this observations in a later section towards the end of this
chapter.

2 Sobolev Spaces and Weak Formulation

Until this section we have always considered the Dirichlet problem with smooth data, in partic-
ular we started assuming f ∈ C2

c (Ω) in Theorem 0.1 and relaxed this assumption to f ∈ C1(Ω)
in Theorem 0.2. Nevertheless, as already discussed in Remark 0.3, it is not possible to decrease
the regularity further, for example f ∈ C0(Ω), and still have u ∈ C2(Ω). As usually done in
mathematics if the hypothesis of a Theorem are too stringent for the thesis the only thing left
to do is to relax the thesis. In particular in this section we will give a weaker concept of solution
for (1.2) which will yield a less regular solution, therefore allowing for a less smooth data. We
�rst observe that if u 6∈ C2(Ω) then we can not give sense to the classical de�nition of the
Laplacian, therefore we need to generalize somehow the notion of second derivative, in order
to do so I will �rst introduce the concept of distribution and then the one of distributional
derivative. I reassure the reader that the notion of weak solution and of classical solution will
be reconciled in a �nal remark once all the notion needed to do so will be introduced.

De�nition 2.1. Let Ω ⊂ Rd be an open set then a distribution is a linear map, T : C∞c (Ω)→
R such that for any {ϕn}n∈N converging to ϕ ∈ C∞c (Ω) then lim

n→∞
Tϕn = Tϕ. We denote the

space of all distribution de�ned on the domain Ω as D′(Ω).

Remark 2.2. In particular given a locally integrable function, i.e. f ∈ L1
loc(Ω), there is a canon-

ical correspondence between L1
loc(Ω) and D′(Ω), i.e.

L1
loc → D′(Ω)

f 7→ Tf

where the operator Tf is de�ned by its action, < Tf , ϕ >:=

∫
Ω

fϕ dx. The same identi�cation

will hold also for functions in Lp(Ω), since Lp(Ω) ⊂ L1
loc(Ω), for all p ∈ [1,∞].

De�nition 2.3. Given a distribution it is always possible to de�ne a distributional deriva-

tive, in particular given T ∈ D′(Ω) then DiT ∈ D′(Ω) is called the partial distributional
derivative in the xi direction if < T, ∂xiϕ >= − < DiT, ϕ > for all ϕ ∈ C∞c (Ω).
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For the reader interested in developing a deeper insight in the theory of distributions I
suggest [49], [82] and [90]. Now that we have a weak enough concept of derivative I would
like to do some symbolic calculation in order to see what would be a good de�nition of weak
solution. We begin considering v ∈ C∞c (Ω), from now on called test function, then we multiply
(1.2) by v and integrate by parts to obtain,

−
∫
Ω

v∆u dx = −
∫
Ω

d∑
i=1

v ∂2xiu dx =

∫
Ω

d∑
i=1

∂xiv ∂xiu dx

d∑
i=1

∫
Ω

∂xiv ∂xiu dx =

∫
Ω

∇u · ∇v =

∫
Ω

fv dx. (1.13)

in order to give sense to (1.13) for solutions that are not twice di�erentiable we can use the
notion of distributional derivative , i.e.

d∑
i=1

< DxiTu, ∂xiv >=

∫
Ω

fv dx, ∀v ∈ C∞c (Ω). (1.14)

At this point reader might be bothered by the miss match in regularity between the space
where the solution live and the space where we take the test functions, in fact while we take
the test functions in C∞c (Ω), it is enough that Tu is a distribution whose derivative can be
represented as an L1

loc(Ω) function. In order to deal which this missmatch in regularity we
introduce a powerful concept, the idea of Sobolev spaces.

De�nition 2.4. Let Ω be an open set in Rd and consider u ∈ Lp(Ω), then by virtue of Remark
2.2 we �nd the corresponding canonical distribution Tu ∈ D′(Ω),

Tu : C∞c (Ω)→ R

ϕ 7→
∫
Ω

uϕ dx.

If Tu admits a partial distributional derivative DxiTu, in all directions, and furthermore it exist
Dxiu ∈ Lp(Ω) such that the following statement holds,

DxiTu : C∞c (Ω)→ R

ϕ 7→
∫
Ω

Dxiuϕ dx

then we say that u lives in the Sobolev space W1,p. Furthermore if for i ∈ {1, . . . , d} we have
that Dxiu lives in W1,p then u lives in W2,p, this allows to de�ne inductively the Sobolev space
Ws,p, for any s ∈ N. In particular in the case p = 2 it is usual to denote the Sobolev space
Ws,2 as Hs(Ω).

The plan of action for the reminder of this section will be as follow, �rst I will give a brief
overview of some useful properties of Sobolev spaces, next I will introduce the notion of weak
solution for (1.2), then I will prove some useful result to show existence and uniqueness of weak
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solutions. I redirect the reader interested in getting a deeper knowledge regarding the topics
treated in the remainder of this section to [47, 82, 22, 70, 71, 72, 35].

Proposition 2.5. The Sobolev space Ws,p(Ω) is a Banach space with respect to the following
norm,

‖u‖pWs,p(Ω) = ‖u‖pLp(Ω) +
∑

0<|α|≤s

‖Dαu‖pLp(Ω),

where α = (α1, . . . , αd) ∈ Nd is a multi-index and Dα is the partial distributional derivative
taken αi times in the i-th direction for all i ∈ {1, . . . , d}. Furthermore if we select p = 2 the
space Hs(Ω) is a Hilbert space with respect to the scalar product,

(u, v)Hs(Ω) = (u, v)L2(Ω) +
∑

0<|α|≤s

(Dαu,Dαv)L2(Ω),

which induces the above norm for p = 2. Last but not least for p ∈ (1,∞) the Sobolev space
Ws,p(Ω) is re�exive and for p ∈ [1,∞) the space Ws,p(Ω) is separable.

Proof. I redirect the reader interested in the proof of this result to [22], Chapter 9. ut

Proposition 2.6. Given an open set Ω ⊂ R2 such that ∂Ω is Lipschitz continuous and u ∈
W1,p, the trace operator which restricts u on the boundary,

γ0 :W1,p(Ω)→W1− 1
2
,p(∂Ω),

is linear and continuous when p ∈ [1,∞). Furthermore the trace operator admits a continuous
right inverse for p ∈ (1,∞]. If d = 2 then the trace operator,

γ0 : Hm(Ω)→ Hm− 1
2 (∂Ω),

is linear and continuos, for all n ∈ N.

Proof. The result here synthesised has a long history, that is deeply connected with the Uni-
versity of Pavia, therefore I would like to spend a couple of lines to go through di�erent
instances of this result. A classical result from E. Gagliardo states that the trace operator
γ0 : W1,p(Ω) → W1− 1

2
,p(∂Ω) is linear and continuous when p ∈ [1,∞), furthermore the trace

operator admits a continuous right inverse for p ∈ (1,∞]. The original proof of this result can
be found in [50]. The problem for Sobolev space Ws,p(Ω) with s > 1 was addressed later, in
particular it was proven by J. Necas that (γ0, γ1) :W2,p(Ω)→W1,p(∂Ω)× Lp(∂Ω) is a linear
and continuos mapping. Characterizations of the range of the above mentioned operator have
been developed in two dimension by P. Grisvard in [55], Chapter 3, and then extended to three
dimension by A. Bu�a and G. Geymonat [23]. Last the result as here stated follows from the
proof presented in [52] and the argument in [41]. An account of all this results can be found in
[51] ut

De�nition 2.7. Given the Sobolev space Ws,p(Ω) we de�ne the closure of C∞c (Ω) within this
space as Ws,p

0 (Ω), i.e.

Ws,p
0 (Ω) = C∞c (Ω)

Ws,p(Ω)
.
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Another useful notion to introduce at this point is the one of fractional Sobolev space.

De�nition 2.8 (Fractional Sobolev Space). Let u ∈ Lp(Ω), we de�ne the Gagliardo-
Slobodeckij seminorm as:

|u|θ,p :=

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|θp+n
dx dy

) 1
p

,

where n = dim(Ω) and θ ∈ (0, 1). Now it is possible to de�ne the fractional Sobolev space

Ws,p(Ω) =

{
u ∈ Wbsc,p(Ω) s.t. sup

|α|=bsc
|Dαu|θ,p <∞

}
,

where s, p ∈ R>0 and θ = s− bsc.

I will give for granted some basic properties of fractional Sobolev spaces such as the fact
that they are Banach spaces, furthermore when p = 2 they are Hilbert spaces if equipped with
the following norm

‖u‖Ws,p(Ω) = ‖u‖Wbsc,p(Ω) + |u|θ,p.

I redirect the reader interested in getting a deeper knowledge of fractional Sobolev spaces to
[35].

2.1 Weak Solutions

We can argue by density to obtain from (1.14) a new notion of solution, i.e. we �x v ∈ W1,p(Ω)
and consider a sequence {vn}n∈N converging to v in W1,p(Ω) then (1.14) becomes,

lim
n→∞

d∑
i=1

< DxiTu, ∂xivn >= lim
n→∞

∫
Ω

fvn dx. (1.15)

Assuming that the solution of u belongs to the Sobolev space H1(Ω), f ∈ L2(Ω) and the test
function was taken in H1(Ω) we can swap the limit with the integral in order to get from
(1.15): ∫

Ω

d∑
i=1

DxiuDxiv dx =

∫
Ω

fv dx.

More often then not we will by an abuse of notation write ∇u · ∇v to express
d∑
i=1

DxiuDxiv.

De�nition 2.9. Let Ω ⊂ Rn be an open set and f ∈ L2(Ω) then we say u ∈ H1
0 (Ω) is a weak

solution of (1.3) if and only if,

a0(u, v) :=

∫
Ω

∇u · ∇v dx = (f, v)L2(Ω), ∀v ∈ H1
0 (Ω). (1.16)
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It is easy to see that the above de�nition is well constructed in the sense that all strong
solutions, i.e. solutions of (1.3), are also weak solutions. In fact if we take v ∈ H1

0 (Ω), multiply
(1.3) by v and integrate by parts we get precisely (1.16). A well known result which will be
fundamental when dealing with the bilinear form in (1.16) is Poincare's lemma.

Lemma 2.10 (Poincaré). ] Let Ω be an open bounded set, then there exists a constant CP (Ω),
greater then zero, such that for all v ∈ H1

0 (Ω) we have the following inequality,

‖v‖L2(Ω) ≤ CP (Ω)‖∇v‖[L2(Ω)]d .

Proof. Many di�erent proofs have been developed for this result, I redirect the reader interested
in a proof obtained using functional analysis tools to [22], Chapter 9. ut

Corollary 2.11. The bilinear form a0(·, ·) as in De�nition 2.9, is coercive in H1
0 (Ω), i.e. there

exists α > 0 such that ∀v ∈ H1
0 (Ω) the following inequality holds,

α‖v‖H1(Ω) ≤ a0(v, v), ∀v ∈ H1
0 (Ω). (1.17)

It is possible to connect once again the notion of weak solution with the minimization of
the energy functional (1.5).

Proposition 2.12.Weak solutions of (1.3), de�ned as in 2.9, are minimizers of (1.5) in
H1

0 (Ω), and viceversa.

Proof. Let us assume that u ∈ H1(Ω) and rewrite J0(v) in terms of the bilinear form a0(·, ·),

J0(v) =
1

2
a0(v, v)− (f, v)L2(Ω) =

1

2
a0(u, u)− (f, u)L2(Ω)

+ a0(u, v − u)− (f, v − u)L2(Ω)

+
1

2
a0(v − u, v − u).

The only thing left to do is to notice that the �rst line in the previous equation after the equal
sign is J0(u), the second line is null thanks to (1.16) and the last line is greater or equal then
zero thanks to the coercivity of a0(·, ·), therefore J0(v) ≥ J0(u), ∀v ∈ H1

0 (Ω). We have already
proven the implication the other way around in Theorem 1.2, in particular in (1.7). ut

Analogously to what has been done for (1.3), I would like now to de�ne the meaning of
weak solution for (1.10) and prove a similar result as in Proposition 2.12.

De�nition 2.13. Let Ω ⊂ Rn be an open set and f ∈ L2(Ω) then we say that u ∈ H1(Ω) is a
weak solution of (1.10) if and only if,

aε(u, v) :=

∫
Ω

∇u · ∇v dx + ε−1
∫
∂Ω

vu ds = (f, v)L2(Ω), ∀v ∈ H1(Ω). (1.18)

In order to prove a result similar to Proposition 2.12 we �rst need to prove coercivity of the
bilinear form aε.



2 Sobolev Spaces and Weak Formulation 17

Lemma 2.14. The bilinear form aε(·, ·) as in De�nition 2.13, is coercive, i.e. there exists α > 0
such that ∀v ∈ H1(Ω) the following inequality holds,

α‖v‖2H1(Ω) ≤ aε(v, v), ∀v ∈ H1(Ω).

Proof. We will prove this by contradiction, therefore we will suppose that aε(·, ·) is not coercive,
i.e. there exists a sequence {vn}n∈N ∈ H1(Ω) such that

‖vn‖H1(Ω) = 1, aε(vn, vn) =
1

n
→ 0.

Now since {vn}n∈N is a bounded sequence in the Hilbert spaceH1(Ω) and therefore in a re�exive
Banach space, there exists a subsequence {vnk}k∈N such that, vnk ⇀

H1(Ω)
v. Furthermore by

Rellich�Kondrachov Theorem we know that, vnk −→L2(Ω)
v. Weak convergence in H1(Ω) tells us

that, ∫
Ω

(v − vnk)w dx +

∫
Ω

∇(v − vnk) · ∇w dx→ 0, ∀w ∈ H1(Ω).

Now if as test function w we take v then we get that,

lim
k→∞
‖∇vnk‖L2(Ω)‖∇v‖L2 ≥ lim

k→∞

∫
Ω

∇vnk · ∇v dx = ‖∇v‖2L2(Ω),

lim
k→∞
|vnk |H1(Ω) ≥ |v|H1(Ω).

Using the fact that aε(vn, vn) = 1
n
→ 0 from the above expression we get that,∫

Ω

|∇vn|2 dx→ 0 ⇒ ‖v‖H1(Ω) = ‖v‖L2(Ω).

Since vnk −→L2(Ω)
v we get ‖v‖L2(Ω) = lim

k→∞
vnk = 1, and since the gradient of v vanishes we know

that v ≡
√

1
dx(Ω)

, but this contradicts the fact that aε(vn, vn) = 1
n
→ 0 which implies,

∫
∂Ω

|v|2 dx = lim
n→∞

∫
∂Ω

vn dx = 0.

ut
Proposition 2.15.Weak solutions of (1.10), de�ned as in 2.13, are minimizers of (1.9) in
H1(Ω), and viceversa.

Proof. The proof is analogous to the one presented for Proposition 2.12. ut

2.2 Existence and Uniqueness

Once the concept of weak derivative has been introduced is time to show that both De�nition
2.9 and 2.13 are well posed. The instrument to do this is the Lax-Milgram theorem, for which
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I would like to give two di�erent proofs. The �rst one will follow from properties of Hilbert
spaces. The second (and more general one) is a consequence of convex minimization results
and it is nicely connected to the calculus of variation prospective that we have introduced in
the previous section.

Theorem 2.16 (Lax-Milgram). Let X be a Hilbert space and consider the variational prob-
lem,

find u ∈ X such that a(u, v) = F (v) ∀v ∈ X. (1.19)

Assuming that the following properties are satis�ed:

1. a : X ×X → R is a coercive and continuous bilinear form;
2. F : X → R is a linear and bounded functional, i.e. F ∈ X∗;

then the above mentioned variational problem admits a solution, furthermore this solution is
unique.

Proof. We notice that if a(·, ·) is coercive and continuous then we have the following chain of
inequalities holds,

α‖·‖2X ≤ a(·, ·) ≤M‖·‖2X ,

where α and M are respectively the coercivity and the continuity constants. In other words
the bilinear form a(·, ·) induces a scalar product which is equivalent to the canonical scalar
product in X. Therefore using Ritz representation theorem we identify X with its dual X∗ and
therefore given F ∈ X∗ there exists u ∈ X such that for all v ∈ X the following identity holds,

a(u, v) = F (v).

Now if u1, u2 are two solutions of (1.19) then we know that,

a(u1, v)− a(u2, v) = F (v)− F (v) = 0 ∀v ∈ X,

a(u1 − u2, v) = 0 ∀v ∈ X,

Taking as test function v the di�erence u1−u2 and using the coercivity we get that ‖u1 − u2‖X
is null, therefore u1 and u2 are two identical elements of X. ut

Corollary 2.17. The variational problem (1.16) and (1.18) have solutions, furthermore the
solution in unique.

Proof. Both variational problem verify the hypothesis of Lax-Milgram theorem, in fact we have
already proven the coercivity of a0 and aε, while the continuity of aε and a0 can be obtained
simply applying Holder inequality. ut

Remark 2.18. I will assume that the reader is as skilled as the writer in Functional Analysis,
i.e. very little, and therefore is working with one key principle from F. Brezzi in mind: �Do
not identify any space that is not L2(Ω) with its dual�, [14] Chapter 4. How can we deal with
the fact that we have just violated this principle? Well let us start by observing an instance
of where this warning comes from. We know that H1(Ω) ⊂ L2(Ω) and therefore the following
embedding exists L2(Ω)∗ ⊂ H1(Ω)∗, identifying L2 with its dual we get,
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H1(Ω) ⊂ L2(Ω) ' L2(Ω)∗ ⊂ H1(Ω)∗.

If we not only identify L2 with its dual but at the same time we identify H1(Ω) with its dual
we get the contradiction,

H1(Ω) ⊂ L2(Ω) ' L2(Ω)∗ ⊂ H1(Ω)∗ ' H1(Ω),

L2(Ω) = H1(Ω).

This shows us that the problem with identifying a space di�erent from L2(Ω) with its dual, as
we do in Theorem 2.16, only subsists if then we also identify L2(Ω) with its dual. This double
identi�cation doesn't occur in Theorem 2.16, but might occur later on, therefore we will provide
the reader with a proof of Theorem 2.16 that doesn't require the use of Ritz representation
theorem.

We will begin introducing the reader to a well known result in convex analysis.

Lemma 2.19. Given a re�exive Banach space X and a continuous and strongly convex func-
tion,

J : X → R,

if the following conditions are satis�ed,

1. lim
‖x‖→∞

J(x) = +∞,

2. K is a closed convex subset of X,

then there exists a unique element x∗ ∈ K such that,

J(x∗) = inf
x∈K

J(x).

Proof of Theorem 2.16. First of all we notice that all Hilbert spaces are re�exive Banach spaces,
furthermore X being a Hilbert space is convex and closed. Then we consider the energy func-
tional,

J : X → R,

u 7→ a(u, u)− F (u).

Since a(·, ·) is coercive and F is a bounded linear functional, the following chain of inequalities
holds,

J(u) ≥ α‖u‖2H1(Ω) − CF‖u‖H1(Ω).

From the above inequality we clearly see that as ‖u‖H1(Ω) → +∞ then J(u) → +∞. Now in
order to apply the previous Lemma 2.19 we only need to check that J(u) is a strictly convex
functional. First of all we notice that for all t ∈ [0, 1] and u, v in X we have,
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J
(
tu+ (1− t)v

)
= a
(
tu+ (1− t)v, tu+ (1− t)v

)
− F

(
tu+ (1− t)v

)
= t2a(u, u) + 2t(1− t)a(u, v) + (1− t)2a(v, v)− tF (u)− (1− t)F (v)

= t2a(u, u)− 2t2a(u, v) + t2a(v, v) +O(t)

= t2a(u− v, u− v) +O(t),

since the coe�cient of the quadratic term in J
(
tu+(1− t)v

)
is a(u−v, u−v) which is positive

given the fact that a(·, ·) is coercive, then J(·) is convex. Furthermore since a(·, ·) is continuous
and coercive the coe�cient of the quadratic term is null if and only if u−v is null, i.e. u = v. ut

Remark 2.20.More often then not the Ritz representation theorem is proven using the re�ex-
ivity of Hilbert spaces or by explicitly constructing the Ritz representative. But it is worth
mentioning that the Ritz representation Theorem can be viewed as a consequence of Lemma
2.19. I redirect the reader interested in this type of proof to [53].

3 Regularity in Smooth Domains and Point Singular Domains

We would like now to study the regularity of the weak solution for the partial di�erential
equation (1.1). I redirect the reader interested in developing a better understanding of the
concepts introduced in this section to [47, 54, 55]. The idea behind elliptic regularity is that
ideally the solution u of (1.1) is more regular then its data f . In order to justify this expectations
of ours I will begin with a heuristics, i.e. from (1.1) we know

f 2 = (∆u)2,∫
Rd
f 2d x =

∫
Rd

(∆u)2d x =
d∑

i,j=1

∫
Rd
∂2xiu ∂

2
xj
u dx,

= −
d∑

i,j=1

∫
Rd
∂2xi∂xju ∂xju dx =

d∑
i,j=1

∫
Rd
∂xi xju ∂xi xju dx =

∫
Rd

∣∣D2u
∣∣2 dx. (1.20)

From the above computations we get the idea that if the data f lives in L2(Ω) then also D2u
lives in L2(Ω) and therefore u ∈ H2(Ω). In order to make the above heuristic formal we would
need to be able to swap the order of di�erentiation as done in (1.20); su�cient conditions in
order to do so, in terms of Ck regularity, are given by Schwarz Theorem, i.e. u ∈ C3(Ω). Clearly
requiring u ∈ C3(Ω) is not useful in order to have u ∈ H2(Ω).

De�nition 3.1.We say that the triplet (A,B,C) is a shift triplet for (1.1) if u ∈ A solution
of (1.1) and f ∈ B imply u ∈ C.

Theorem 3.2. Assuming that aij ∈ C1(Ω) and bi, c ∈ L∞(Ω) then
(
H1(Ω),L2(Ω), H2

loc(Ω)
)

is a shift triplet for the weak solution of the Poisson equation in the interior of Ω. Furthermore
if ω is compactly included in Ω, i.e. ω ⊂⊂ Ω, then we have the following estimate,

‖u‖H2(ω) ≤ C(ω,Ω)
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
.
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Proof. I redirect the reader interested in the proof of this result to [47], Chapter 6. ut

Corollary 3.3. Let u ∈ H1(Ω) a weak solution of (1.16) with f ∈ L2(Ω) then u is also a
solution (1.1) almost everywhere.

Proof. Since
(
H1(Ω),L2(Ω), H2

loc(Ω)
)
is a shift triplet for (1.16) then we know that for u ∈

H2
loc(Ω). Since u ∈ H2

loc(Ω) we can integrate by parts to obtain,

a(u, v) =

∫
Ω

∇u∇v dx =

∫
Ω

v∆u dx =

∫
Ω

fv dx ∀v ∈ C∞(Ω),

therefore applying the fundamental lemma of calculus of variation we have that (1.1) is veri�ed
almost everywhere. ut

Following the same argument that one uses to prove the previous Theorem it is possible to
generalize the previous Theorem to higher order derivatives.

Theorem 3.4. Assuming that aij ∈ Cm+1(Ω) and bi, c ∈ L∞(Ω) then
(
H1(Ω), Hm(Ω), Hm+2

loc (Ω)
)

is a shift theorem for the weak solution of the Poisson equation in the interior of Ω. Furthermore
if ω is compactly included in Ω, i.e. ω ⊂⊂ Ω, then we have the following estimate,

‖u‖Hm+1(ω) ≤ C(ω,Ω)
(
‖f‖Hm(Ω) + ‖u‖L2(Ω)

)
.

Until this moment we have considered the regularity elliptic problem without taking into
consideration the boundary, this is known as interior regularity, it is now time to deal with
the boundary regularity. I would like to sketch the path the reader can follow in order to
use interior regularity to prove boundary regularity. Since Ω is pre compact it is possible to
�nd a �nite covering of Ω, i.e. {ωk ⊂⊂ Ω : k ∈ K}. Furthermore if we assume Ω has a C2

boundary then it is possible to �nd a sequence of C2 di�eomorphisms Φk
(
B0(rk) ∩ R+

)
= ωk.

Now we can de�ne the partition of unity ξk such that ξk is a molli�er with support ξk and∑
k∈K ξk = 1. Last by symmetry we can use the interior regularity, i.e. Theorem 3.2, to assert

Φk(ξku) ∈ H2
(
B0(rk) ∩ R+

)
and reconstruct u as follow,

u =
∑
k∈K

ξku =
∑
k∈K

Φ−1k

(
Φk
(
ξku
))
∈ H2(Ω).

Theorem 3.5. Assuming that aij ∈ C1(Ω) and bi, c ∈ L∞(Ω) then
(
H1

0 (Ω),L2(Ω), H2(Ω)
)
is

a shift triplet for (1.16), provided that ∂Ω is smooth. Furthermore the following estimate holds,

‖u‖H2(Ω) ≤ C(ω,Ω)
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
.

Corollary 3.6. Assuming that aij ∈ Cm+1(Ω) and bi, c ∈ L∞(Ω) then
(
H1

0 (Ω), Hm(Ω), Hm+2(Ω)
)

is a shift theorem for (1.16), provided that ∂Ω is smooth. Furthermore the following estimate
holds,
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‖u‖Hm+2(Ω) ≤ C(ω,Ω)
(
‖f‖Hm(Ω) + ‖u‖L2(Ω)

)
.

Now a key assumption in order to follow the proof sketch before was that the boundary
of Ω was smooth, in particular C2. If this assumption is dropped things becomes much more
complicated. In order to present the regularity of the elliptic problem in domains with corner
I would like to introduce the reader to an illuminating example. The idea to use the particular
geometry shown in the next example comes from the introduction of [88].

3.1 Pacman Example

In this example we will study the eigenvalue problem associated with (1.3) in the domain
depicted in Figure 1.2, using the technique of separation of variables. We will make one further
assumption dictated by the physics of the problem, i.e |Φ(ρ, θ)| < ∞. As usual we assume Φ

Fig. 1.2: In the �gure the domain where we solve the Dirichlet eigenvalue problem is drawn.

depends separately upon the radius and the angle of the circular sector, Φ(ρ, θ) = Θ(θ)R(ρ),
expressing the Laplacian in polar coordinates we obtain

∆Φ(ρ, θ) = ∂2xΦ(ρ, θ) + ∂2yΦ(ρ, θ) =
1

ρ
∂ρΦ(ρ, θ) +

1

ρ2
∂2θΦ(ρ, θ) + ∂2ρΦ(ρ, θ)

∆Φ(ρ, θ) =
1

ρ
R′(ρ)Θ(θ) +

1

ρ2
R(ρ)Θ′′(θ) +R′′(ρ)Θ(θ)

therefore imposing the eigenvalue problem we have the following expression,

∆Φ(ρ, θ) = −λΦ(ρ, θ)

1

ρ
R′(ρ)Θ(θ) +

1

ρ2
R(ρ)Θ′′(θ) +R′′(ρ)Θ(θ) = −λR(ρ)Θ(θ).
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We perform some algebraic manipulations to obtain on one side an expression in θ and on the
other side an expression in ρ.( 1

R(ρ)Θ(θ)
×
) 1

ρ
R′(ρ)Θ(θ) +

1

ρ2
R(ρ)Θ′′(θ) +R′′(ρ)Θ(θ) = −λR(ρ)Θ(θ)(

ρ2 ×
) 1

ρ

R′(ρ)

R(ρ)
+

1

ρ2
Θ′′(θ)

Θ(θ)
+
R′′(ρ)

R(ρ)
= −λ

ρ
R′(ρ)

R(ρ)
+
Θ′′(θ)

Θ(θ)
+ ρ2

R′′(ρ)

R(ρ)
= −λρ2

−Θ
′′(θ)

Θ(θ)
= ρ

R′(ρ)

R(ρ)
+ ρ2

R′′(ρ)

R(ρ)
+ λρ2. (1.21)

Now since one side only depend on θ while the other only depend on ρ we obtain a well known
one dimensional eigenvalue problem,Θ′′(θ) = −µΘ(θ),

Θ(0) = Θ(3
2
π) = 0

. (1.22)

It is well known that (1.22) has the following solutions,

µn =
(2

3
n
)2

Θ(θ) = sin

(
2

3
nθ

)
which together with (1.21) gives an ODE for R(ρ), i.e.

ρ
R′(ρ)

R(ρ)
+ ρ2

R′′(ρ)

R(ρ)
+ λρ2 − µn = 0,

ρ2R′′(ρ) + ρR′(ρ) +R(ρ)
(
λρ2 − µn

)
= 0.

Performing the variable change z =
√
λρ we obtain Bessel di�erential equation,

z2R′′(z) + zR′(z) + (z2 − α2
n)R(z) = 0, α2

n = µn.

Bessel ODE has the following solution, R(z) = AJαn(z)+BYαn(z). Since we have the hypothesis
|R(ρ)| <∞ as ρ→ 0 then B = 0, i.e.

R(r) = Jαn(
√
λr),

using homogeneous Dirichlet boundary condition we get R(1) = Jαn(
√
λ) = 0 and therefore λ

must be equal to the square of the m-th zero of Jαn , i.e. λ = (zm,n)2. This yields the following
solution to the eigenvalue problem associated with (1.3),
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Φn,m(ρ, θ) = Jαn(zm,nρ) sin

(
2

3
θn

)
, λm,n = z2m,n.

Now we notice that using the fact that when ρ→ 0,

Jαn(zm,nρ) ≈ 1

Γ (αn + 1)

(zm,nρ
2

)αn
,

then we have the following approximation for Φn,m :

Φn,m(ρ, θ) ≈ Cm,nρ
2
3
n sin

(
2

3
nθ

)
. (1.23)

Computing the norm in W1,2
(
Bρ(0)

)
and W2,2

(
Bρ(0)

)
we can show that Φm,1 does live in

W1,2(Ω) but not in W2,2(Ω). Furthermore if one uses approximation (1.23) to compute the

Gagliardo-Slobodeckij semi-norm we can show that Φm,1 ∈ W
5
3
−ε(Ω). Expanding a generic

solution of (1.16) in the eigenspace we notice that the singular functions Sm are of the form
Φm,1 if f ∈ L2(Ω). In general the following result holds,

Theorem 3.7. Let us consider a domain Ω ⊂ R2 with a re-entrant corner of aperture ω. If
f ∈ W0,p(Ω) then u0 ∈ W1,p

0 (Ω) is such that,

u0 −
∑
m

CmSm ∈ W2,p(Ω),

where the Sm are a particular set of singular functions belonging to the space W2− π
ω
−ε,p(Ω).

Furthermore,
(
W1,p

0 (Ω),W0,p(Ω),W2,p(Ω)
)
is a shift triplet for u0 −

∑
mCmSm.

Proof. I redirect the reader interested in the proof of this result to [55], Chapter 4. ut



2

Weighted Sobolev Spaces

In this chapter I would like to introduce the notion of weighted Sobolev space, later I will
focus my attention to particular classes of weighted Sobolev spaces that are very useful when
dealing with singular domains. Last I will show how to approximate functions in weighted
Sobolev spaces using a piecewise linear interpolant. The idea of using weighted Sobolev spaces
to study singular problems has a long history, I redirect the reader interested in this topic to
[39, 37, 42, 12, 34, 78]. Last I redirect the reader interested in generic properties of Muckenhoupt
Sobolev spaces to [86] and [2].

De�nition 0.1. A weight is a function ω ∈ L1
loc(Rd) that is positive almost everywhere.

One important feature of weights as de�ned above is that they induce a measure on the
Borelian of Rd, i.e.

ω : B(Rd)→ R,

E 7→
∫
E

ω(x) dx.

It is a well known fact that the above measure is absolutely continuous with respect to the
Lebesgue measure, perhaps a more interesting observation is that the Lebsegue measure is
absolutely continuos with respect to ω. A class of weights that will be of particular interest
to us for the remainder of this chapter are Muckenhoupt weights. This class of weights was
�rst introduced to characterize for which weights is the Hardy-Littlewood operator bounded in
Lp(Rd), [76]. The reason why we focus on this particular class of weights is that they have some
very desirable properties, one among all they have the so called strong doubling property,
that will be essential in the construction of our interpolant.

De�nition 0.2 (Muckenhoupt Weights). Given a weight ω ∈ L1
loc(Rd) we say that ω is

Muckenhoupt of class p, i.e. ω ∈ Ap(Rd) if there exists Cp,ω > 0 such that,

sup
{B:B ball in Rd}

(
−
∫
B

ω dx
)(
−
∫
B

ω
1

1−p dx
)p−1

= Cp,ω <∞.

I will now introduce the reader to some of the previously mentioned desirable property of
Muckenhoupt weights.

Theorem 0.3. Let p ∈ (1,∞), ω ∈ Ap(Rd) then the following statements hold,
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1. ω
1

1−p ∈ L1
loc(Rd),

2. Cp,ω > 1,
3. Ap(Rd) ⊂ Ar(Rd) and Cp,ω ≥ Cr,ω for all p, r such that 1 < p ≤ r <∞,

4. ω
1

1−p ∈ Ap′(Ad) and C
p′,ω

1
1−p

= C
1
p−1
p,ω , where 1

p
+ 1

p′
= 1,

5. The class of Ap(Rd) weights is invariant under the composition of isotropic dilation and
translation.

Proof. Let us prove the above statements in order.

1. From De�nition 0.2 we know that for a �xed ball B ⊂ Rd, we have:(
−
∫
B

ω dx
)(
−
∫
B

ω
1

1−p dx
)p−1

= Cp,ω <∞,

(
−
∫
B

ω
1

1−p dx
)

=

((
−
∫
B

ω dx
)−1

Cp,ω

) 1
p−1

<∞,

this is because the Lebesgue measure is absolutely continuous with respect of ω and therefore

the quantity

((
−
∫
B
ω dx

)−1
doesn't explode.

2. We begin observing that 1 = ω
1
pω−

1
p . Using Holder inequality we the obtain,

1 = −
∫
B

ω
1
pω−

1
p dx ≤

(
−
∫
B

ω dx
) 1
p
(
−
∫
B

ω
1

1−p dx
) p−1

p
,

the only thing left to do is to evaluate the same expression at the power of p and observe
that since we know both terms of the inequality are greater then zero the inequality sign
doesn't change order.

3. Once again we make use of Holder inequality in order to observe that if 1 < p ≤ r < ∞
then, (

−
∫
B

ω
1

1−r dx
)r−1

≤
(
−
∫
B

ω
1

1−p dx
)p−1

.

We can multiply the above expression by −
∫
B
ω dx and take the supremum on {B :

B ball in Rd} to obtain,

sup
{B:B ball in Rd}

−
∫
B

ω dx
(
−
∫
B

ω
1

1−r dx
)r−1

≤ sup
{B:B ball in Rd}

−
∫
B

ω dx
(
−
∫
B

ω
1
1− dx

)p−1
.

Now that we know Cr,ω ≤ Cp,ω it is clear that all u ∈ Ap(Rd) also live in u ∈ Ar(Rd), i.e.
Ap(Rd) ⊂ Ar(Rd).

4. Applying De�nition (0.2) with ω equal to ω
1

1−p we get the desired inequality.
5. We now consider an isotropic dilation composed with a translation x 7→ αx + b and the

weight ω(x) = ω(αx + b), then we notice:
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−
∫
Br(x)

ω(x) dx = −
∫
Br(x)

ω(αx + x) dx =
1

αn
1

|Br(x)|
−
∫
Br(x)

ω(y) dy = −
∫
Bαr(x+b)

ω(y) dy,

therefore ω is a Muckenhoupt weight, in particular ω ∈ Ap(Rd).

ut

Corollary 0.4. Let ω ∈ Ap(Rd) with p ∈ (1,∞) and let E ⊂ Rd be a measurable subset of
B ⊂ Rd, a ball, then:

ω(B) ≤ Cp,ω

( |B|
|E|

)p
ω(E).

Proof. Since E ⊂ R is measurable then we have,

|E| =
∫
E

1 dx =

∫
E

ω
1
pω−

1
p dx

H.

≤
(∫

E

ω
p′
p dx

) 1
p′
(∫

E

ω dx
) 1
p

E⊂B
≤ ω(E)

1
p |B|

1
p′
(
−
∫
B

ω−
p′
p dx

) 1
p′
. (2.1)

We use the fact that ω is a Muckenhoupt which together with
1

p′
=
p− 1

p
to obtain,

(
−
∫
E

ω dx
)(
−
∫
E

ω
1

1−p dx
)p−1

≤ Cp,ω <∞,(
−
∫
E

ω dx
)(
−
∫
E

ω−
p′
p dx

)p−1
≤ Cp,ω <∞,(

−
∫
E

ω dx
) 1
p
(
−
∫
E

ω−
p′
p dx

) 1
p′ ≤

(
Cp,ω

) 1
p
<∞,(

−
∫
E

ω−
p′
p dx

) 1
p′ ≤

(
Cp,ω

) 1
p
(
−
∫
E

ω dx
)− 1

p
<∞.

In the last row we didn't change the sign of the inequality because we know from De�nition 0.1
the quantity we are interested in is less then one. Furthermore the integral on the right hand
side of the above expression is di�erent from zero because we know the Lebesgue measure is
absolutely continuous with respect to ω. Combining the last inequality with (2.1) we obtain,

|E| ≤
(
Cp,ω

) 1
p
ω(E)

1
p |B|

1
p′
(
−
∫
B

ω dx
)− 1

p ≤
(
Cp,ω

) 1
p
ω(E)

1
p |B|

1
p′ |B|

1
pω(B)−

−1
p ω(B)−

1
p ,

|E| ≤
(
Cp,ω

) 1
p

(
ω(E)

ω(B)

) 1
p

|B|.

To conclude we just raise everything to the power of p and multiply and divide by what is
needed. ut

Remark 0.5. A particular case of the above Corollary is the fact that given two balls centred
at x, i.e. B2r(x) and Br(x), we then have:
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ω
(
B2r(x)

)
≤ C

(
|B2r(x)|
Br(x)

)p

,

ω
(
B2r(x)

)
≤ Cω

(
Br(x)

)
.

This last inequality is precisely what we called the strong doubling property of the weight
ω : B(Rd)→ R.

Now it is time to introduce the weighted counterpart of the Lebesgue space and of the
Sobolev space. Furthermore we will give a brief characterization of those spaces, by some of
their major properties.

De�nition 0.6. Given ω ∈ Ap(Rd) and Ω ⊂ Rd a pre-compact set, we de�ne the Muckenhoupt
weighted Lebesgue space Lp(ω,Ω) as the set of measurable functions u : Ω → R such that,

‖u‖Lp(ω,Ω) =
(∫

Ω

|u|p ωdx
) 1
p
<∞. (2.2)

We call Ws,p(ω,Ω) the set of measurable u : Ω → R such that Dαu ∈ Lp(ω,Ω), for any
multi-index α such that |α| ≤ s.

Proposition 0.7. The Muckenhoupt weighted Lebesgue space Lp(ω,Ω) is a Banach space with
respect to the norm de�ned in (2.2).

Proposition 0.8. The Muckenhoupt weighted Lebesgue space Lp(ω,Ω) is a subset of L1
loc(Ω).

Proof. Since ω is a Muckenhoupt weight we know from Theorem 0.3 that ω−
1
p−1 ∈ L1

loc(Rd)
and therefore for any ball B ⊂ Ω the following holds,∫

B

|u| =
∫
B

|u|ω
1
pω−

1
p

H

≤
(∫

B

|u|pω
) 1
p
(∫

B

ω−
1
p−1

) p−1
p
<∞.

ut

1 Weighted Sobolev Spaces for Singular Domains

For the remainder of this chapter I would like to focus my attention on a particular Mucken-
houpt weight, i.e. ω(x) = |x|γ. A particular case of weighted Sobolev space with ω(x) = |x|γ
are Kondrat'ev and Maz'ya Sobolev spaces on domains with a speci�c geometry. At this point
the reader might be wondering why I want to introduce this �exotic� weighted Sobolev space.
The answer is given by the fact that Maz'ya and Kondrat'ev Sobolev spaces allow to retrieve
desirable shifts similar to the one presented for smooth domains also in the case of domains
with point singularities. In fact Kondrat'ev and Maz'ya Sobolev spaces are a particular case
of weighted Sobolev spaces for which the weights depend on the geometry of the domain. I
redirect the reader interested in weighted Sobolev space for domains with point singularities
to [29, 30, 67, 15].
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Proposition 1.1. The weight ω(x) = |x|γ is a Muckenhoupt weight of class Ap(Rd) if γ ∈(
− d, d(p− 1)

)
.

Proof. We begin by observing that given a weight of the form x 7→ |x|γ then we can exactly
compute the measure of a ball with respect to ω,

ω
(
Br(x0)

)
=

∫
Br(x0)

ω(x) dx =

∫
Br(x0)

|x|γ dx =

∫
Br(0)

|y|γdy,

= C

∫ r

0

|y|γ+(d−1)d|y| = C
∣∣∣1
0
rγ+d,

which is �nite for γ ∈ (−n,∞). If we compute the measure of a ball with respect to ω
1

1−p ,
following the same steps presented above, we obtain:∫

Br(x0)

ω
1

1−p = C
∣∣∣1
0
r

γ
1−p+d,

which is �nite ig γ < d(p − 1). Combining this last two computations it is easy to see that if

ω ∈
(
− d, d(p− 1)

)
then ω is a Muckenhoupt weight. ut

For the remainder of my thesis I will assume that Ω is a pre-compact subset of R2 with
smooth boundary except for a point where it has a corner of aperture α, similarly to the domain
depicted in Figure 1.2. A useful quantity to de�ne is β ∈ R such that,

0 ≤ −β − 1 <
π

ω
. (2.3)

De�nition 1.2 (Kondrat'ev-Sobolev Space). Given a measurable function u : Ω → R we
de�ne the following quantity,

‖u‖Kmβ (Ω) =
( m∑
k=0

|u|2Kkβ
) 1

2
, |u|Kkβ(Ω) =

( ∑
|α|=k

‖Dαu‖2
L2
(
|x|2β+2|α|, Ω

)) 1
2

.

Furthermore we will call the Kondrat'ev-Sobolev space, Kmβ (Ω), the set of measurable
functions u : Ω → R with �nite ‖u‖Kmβ . It is important to notice that β must be chosen in

order to verify (2.3).

Now it is possible to prove our �rst shift Theorem, that improves on the one presented at
the end ot last chapter, i.e. Theorem 3.7.

Theorem 1.3. The triplet
(
H1

0 (Ω), ‖u‖Kmβ+2
(Ω), ‖u‖Km+2

β
(Ω)
)
is a shift triplet for (1.16).

Proof. Unfortunately proving this result would be out of the scope of my thesis, but I redirect
the reader interested in such result to [15], Chapter 5. ut
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The limitation of the above stated regularity result, and in particular of Kondrat'ev-Sobolev
spaces, is the inability to capture the singularities presented by the eigenfunctions of the mixed
Dirichlet-Neumann elliptic problem, i.e.

−∆u = f in Ω

∂nu = 0 on ΓN ⊂ ∂Ω

u = 0 in ΓD ⊂ ∂Ω

. (2.4)

In order to deal with this particular type of problem we will use Maz'ya-Sobolev spaces, i.e.

De�nition 1.4 (Maz'ya-Sbolev Space). Given a measurable function u : Ω → R we de�ne
the following quantities,

‖u‖Wm,2(|x|2β+2m,Ω) =
( m∑
k=0

|u|2Wk,2(|x|2β+2m,Ω)

) 1
2
,

|u|Wk,2(|x|2β+2m,Ω) =

( ∑
|α|=k

‖Dαu‖2
L2
(
|x|2β+2m, Ω

)) 1
2

.

Furthermore we will call Maz'ya-Sobolev space, Wm,2(|x|2β+2m, Ω), the set of measurable
functions u : Ω → R with �nite ‖u‖Wm,2(|x|2β+2m,Ω). Once again we will denoteWm,2

0 (|x|2β+2m, Ω)

the closure of the smooth functions with compact support with respect to the ‖·‖Wm,2(|x|2β+2m,Ω).

Theorem 1.5. The triplet
(
H1(Ω),Wm,2(|x|2(β+m+2), Ω),Wm+2,2(|x|2(β+m+2), Ω)

)
is a shift

triplet for the weak formulation of (2.4).

Proof. I redirect the reader to interested in the proof of this result to [67], Chapter 7. ut

Corollary 1.6. The triplet
(
H1(Ω),Wm,2(|x|2(β+m+2), Ω),Wm+2,2(|x|2(β+m+2), Ω)

)
is a shift

triplet for (1.18).

Proof. The key to prove this result is the work by Z. Mghazli, [75], where it is showed using
techniques similar to the one presented in [55] that (2.13) and the weak formulation of (2.4)
present the same singular behaviour on polygonal domains. A careful reader might be bothered
by the fact that Ω is not polygonal. Since we know that for smooth domains (1.18) enjoys a
shift triplet like the one presented in Theorem 3.5, then we are only concerned by the singular
part of the boundary which is of polygonal type. ut

Before going to the next part of this chapter which will be focused on the approximation of
functions in Munkenhoupt weighted Sobolev spaces we would like to address the existence of
a Gagliardo-Nierenberg-Sobolev type embedding, i.e.

W1,q
0 (|x|2(β+2), Ω) ↪→ Lp((|x|2(β+2), Ω). (2.5)

In order to do this we will �rst discuss the existence of a general continuous embedding of the
form,
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W1,q
0 (ω,Ω) ↪→ Lp(ρ,Ω),

for Muckenhoupt weighted Sobolev space, then we will derive (2.5) as a particular case. I will
�rst introduce a Lemma that is going to be fundamental to prove the following result.

Lemma 1.7. Let F be a Lipschitz continuous function on Bτ (x0) ⊂ R2, p ∈ (1, q], ρ ∈ Aq(R2)
and ω ∈ Ap(R2) such that:

r

R

(
ρ
(
Br(x0)

)
ρ
(
BR(x)

) ) 1
q

≤ Cρ,ω

(
ω
(
Br(x0)

)
ω
(
BR(x)

) ) 1
p

, (2.6)

for all x ∈ B2r(1x0) and 0 < r < R. Then the following inequality holds,

(
1

ρ
(
BR(x0)

) ∫
BR(x)

|F (u)|qρ(u)

) 1
q

≤ Cr

(
1

ω
(
BR(x0)

) ∫
BR(x)

|∇F (u)|pω(u)

) 1
p

.

Proof. The proof of this result can be found for p ∈ (1, q) in [24]. Furthermore it has been
proven for Holder continuous function when p = q in [73]. ut

Theorem 1.8. Given two weights ω, ρ that satisfy the hypothesis of the previous Lemma then
there exists a continuous embedding,

W1,q
0 (ω,Ω) ↪→ Lp(ρ,Ω).

Proof. In order to prove this result we �rst embed Ω in a ball of radius R and consider
∼
v

the extension of v by zero outside of Ω. We �rst notice that when p = q thanks to Morrey's
inequality we can apply the previous Lemma and conclude. When p ∈ (1, q) we need to argue

by density i.e. we consider a sequence vn ∈ C∞c (Ω) such that vn
W1,2

0 (ω,Ω)
−→ ∼

v and observe that
for all n ∈ N the following inequalities follow from the previous Lemma,

‖vn‖Lq
(
ρ,BR(x0)

) ≤ Rρ
(
BR(x0)

) 1
qω
(
BR(x0)

)− 1
p‖∇w‖

Lp
(
ω,BR(x0)

).
Bringing the above expression to the limit and observing that ρω satis�es the strong doubling
property we have,

‖vn‖Lq
(
ρ,Ω
) ≤ C(Cq,ρ, Cp,ω)diam(Ω)ρ

(
Ω
) 1
qω
(
Ω
)− 1

p‖∇w‖
Lp
(
ω,Ω
),

which gives us the desired embedding. ut

Remark 1.9. I urge the reader to notice that we are developing an embedding of W1,q
0 (ω,Ω) in

Lp(ρ,Ω) and not ofW1,q(ω,Ω). From the proof of the above Theorem the reason appears clear,
in fact given the fact we work with domains that do not have smooth boundaries it would not
be possible to extend u by zero outside of Ω.

Corollary 1.10. If p ∈ (1, q], γ ∈
(
− 2, 2(p− 1)

)
and
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2(β + 3) + 1

2(β + 3)
≤ q

p
,

then the continuous embedding W1,q
0 (|x|2(β+2), Ω) ↪→ Lp(|x|2(β+2), Ω) exists.

Proof. To obtain this result it is just a matter of combining the above result with Proposition
1.1 and computing exactly all the terms involved. ut

2 Approximation of Functions in Weighted Sobolev Spaces

We are interested in approximating the functions of W2,2
(
Ω, |x|2(β+1)

)
. In order to do this

I will introduce the quasi interpolant developed in [79], for the piecewise linear case. Other
examples of weighted quasi interpolant can be found in [43] and [34].

De�nition 2.1. A domain Ω ⊂ R2 is a star-shaped with respect to a ball B ⊂ Ω, if for all
x ∈ Ω there exists XB ∈ B such that the line connecting xB and x is entirely contained in Ω.

The �rst result we need in order to construct the interpolant is a Poincaré type inequality
for weighted Sobolev spaces, similar to the one in Lemma 2.10.

Lemma 2.2. Let ω ∈ Ap(R2), with p ∈ (1,∞), Ω pre-compact in R2 that veri�es the above
de�nition, then given f ∈ Lp0(ω,Ω) there exists u ∈

[
W 1,p

0 (ω,Ω)
]n

such that, ∇ · u = f , and
the following inequality holds,

‖u‖[
W 1,p(ω,Ω)

]n ≤ C‖f‖Lp(ω,Ω).

Proof. This result in the non weighted setting is a consequence of the Banach close range
theorem and Ladyzhenskaya Theorem on surjectivity of the divergence. The same result in
the context of weighted Sobolev space has been proven by R. G. Duran and F. L. Garcia in
[40]. ut

Theorem 2.3 (Weighted Poincaré Inequality). Let Ω ⊂ R2 be as in the above de�nition,

with diam(Ω) ≈ 1. Furthermore let χ ∈ C0(Ω), such that

∫
Ω

χdx = 1. Then �xed p ∈ (1,∞)

and ω ∈ Ap(R2), for all v ∈ W1,p(µ,Ω) such that

∫
Ω

vχ dx = 0 we have:

‖v‖Lp(µ,Ω) ≤ C‖∇v‖Lp(µ,Ω),

where µ is an isotropic dilation - translation of ω and C depends only on χ,B,Cp,ω.

Proof. We know from Theorem 0.3 that µ ∈ Ap(R2) and Cp,ω = Cp,µ. Given v ∈ W1,p(µ,Ω) we
de�ne the auxiliary function,

∼
v = sign(v)|v|p−1µ−

(∫
Ω

sign(v)|v|p−1µ
)
χdx.

If we apply Holder inequality to the previous equation we get,



2 Approximation of Functions in Weighted Sobolev Spaces 33∫
Ω

µ|v|p−1µ
1
pµ

1
q dx ≤

(∫
Ω

µ|v|p dx
) 1
q
(∫

Ω

µ dx
) 1
p ≤ C(µ, p)‖v‖

p
q

Lp(µ,Ω) ≤ C(µ, p)‖v‖p−1Lp(µ,Ω).

(2.7)
We de�ne t = −p′

p
then t+ q = 1 and q(p− 1) = p therefore,

(∫
Ω

µt|v|q dx
) 1
q

=

(∫
Ω

µt
∣∣∣∣sign(v)|v|p−1µ−

(∫
Ω

sign(v)|v|p−1µ
)
χ

∣∣∣∣q dx
) 1

q

≤
(∫

Ω

µt+q|v|q(p−1) dx
) 1
q

+
(∫

Ω

|v|p−1µ dx
)
‖χ‖Lq(µt,Ω)

(2.7)

≤ ‖v‖p−1Lp (µ,Ω)

Once again we use Theorem 0.3 to assert that µt ∈ Aq(R2) since t = q
p
, in this way we can apply

the previous Lemma since
∫
Ω
χ = 1 implies

∫
Ω

∼
v dx = 0, i.e. there exists u ∈

[
W 1,q

0 (µt, Ω)
]n

such that,

‖u‖[
W 1,q(µt,Ω)

]n ≤ C
∥∥∥∼v∥∥∥

Lq(µt,Ω)
. (2.8)

Finally we notice that since by hypothesis

∫
Ω

vχ dx = 0, then we have,

‖v‖pLp(µ,Ω) =

∫
Ω

v
∼
v dx +

(∫
Ω

sign(v)|v|p−1µ dx
)∫

Ω

χv dx =

∫
Ω

v
∼
v dx.

Substituting
∼
v by ∇ · u we get,

‖v‖pLp(µ,Ω) =

∫
Ω

v(∇ · u) dx ≤
∫
Ω

|u∇v| dx =

∫
Ω

∣∣∣u∇vµ 1
pµ−

1
q

∣∣∣ dx
H.

≤
(∫

µ|∇v|p dx
) 1
p
(∫

µt|u|q dx
) 1
q

(2.8)

≤ ‖∇v‖Lp(µ,Ω)

∥∥∥∼v∥∥∥
Lp(µ,Ω)

(2.7)

≤ ‖∇v‖Lp(µ,Ω)‖v‖
p−1
Lp(µ,Ω).

ut

Since we have proven a weighted Poincare inequality we can begin the construction of a
piecewise linear quasi interpolant for functions in Wm,p(ω,Ω). To do so I will begin by some
geometric assumption on the mesh.

De�nition 2.4.We will call T =
{
Ti : i ∈ I} a simplicial mesh of a d dimensional polytope

Ω, if Ti are simplexes, Ω = ∪i∈ITi and |Ω| =
∑

i∈I |Ti|. Furthermore we say that the mesh is
compatible if the intersection of two Ti, Tj ∈ T is either empty of a common d−1 dimensional
simplex. Last we say that the mesh T is shape regular if there exists σT > 0 such that,

max
{hT
ρT

: T ∈ T
}
≤ σT , (2.9)

where hT is the diameter of T and ρT is the diameter of the inscribed sphere in T .
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I will focus my attention on the two dimensional case, mainly. Given a simplex T ∈ T we

denote N (T ) the vertices of the simplex T and
◦
N (T ) the vertices of the simplex T that do

not touch the boundary of Ω. Furthermore the union of N (T ) for all T ∈ T I will denote by

N (T ), similarly the same notation
◦
N (T ) is adopted to represent to union

◦
N (T ) for all T ∈ T .

As usually done in the �nite element method I introduce the spaces V and
◦
V as follows,

V =
{
v ∈ C0(Ω) ; wT ∈ P1(T )∀T ∈ T

}
,

◦
V =

{
v ∈ C0(Ω) ; wT ∈ P1(T )∀T ∈ T and γ0(v) ≡ 0

}
. (2.10)

In particular any function of v ∈ V or v0 ∈
◦
V can be uniquely determined by its degrees of

freedom, i.e.

v =
∑

z∈N(T )

vzφz, v0 =
∑

z∈
◦
N(T )

vzφz, (2.11)

where vz is the degree of freedom associated to the base function φz, which is the value of v
at the node z. Last we will call Sz the union of the elements that contains z inside and ST the
union of all elements of the mesh that have non empty intersection with T . We now consider
ψ ∈ C∞(Rn) such that ‖ψ‖L1(R2) = 1 such that the support of ψ is contained in BR(σT )(0),
which will be our averaging function. Since we need to average inside each element of the
triangulation we de�ne the following scaling of ψ,

ψz(x) =
(m+ 1)2

hz
ψ
((m+ 1)(z− x)

hz

)
.

Now for all z ∈
◦
N and v ∈ Wm,p(ω,Ω) we de�ne the averaged Taylor polynomial, also

known as Sobolev polynomial, of order m around z, as:

Qm
z v(y) =

∫
Sz

Pmv(x,y)ψz(x) dx,

where Pmv(x,y) is the usual Taylor polynomial, i.e. Pmv(x,y) =
∑
|α|≤m

1
α!
Dαv(x)(y − x)α.

Remark 2.5. The reader now can clearly see why it is important that the support of ψz is
contained in Sz. In fact if supp(ψz) ⊂ Sz then we can integrate by parts to show that Qm

z v is
well de�ned for all v ∈ L1(Ω). Furthermore since Ω is pre-compact and Lp(ω,Ω) ⊂ L1

loc(Ω)
then Qm

z v is well de�ned for all v ∈ Lp(ω,Ω).

It is now time to discuss the property of averaged Taylor polynomial just introduced; the fol-
lowing proposition will be a generalisation for weighted Sobolev space of the concept introduced
in [20], Chapter 4.

Proposition 2.6. Given a function v ∈ Lp(ω,Ω) the object Qm
z v, as de�ned above, enjoys the

following properties:
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1. Qm
z v is a polynomial of degree at most m,

2. Qm
z v is a projection,

3. DαQm
z v = Qm−|α|Dαv, for all v ∈ W |α|,p(ω,Ω) and α ∈ N2 such that |α| ≤ 1.

Proof. 1. Since we are integrating in the variable x and Pmv(x,y) is a polynomial in y the
�rst property comes for free.

2. The key ingredient to prove this is that the Taylor polynomial is a projection.

Qm
z

[
Qm

z v
]

=

∫
Sz

Pm
[ ∫

Sz

Pmv(x,y)ψz(x) dx
]
(y, z)ψ(y) dy

=

∫
Sz

∫
Sz

PmPmv(x,y)(y, z)ψz(x)ψz(y) dxdy

=

(∫
Sz

Pmv(y, z)ψ(y) dy

)(∫
Sz

ψ(x) dx

)
= Qm

z v.

3. First we notice that if v ∈ W |α|,1(Ω), then Dαv ∈ L1(Ω) and therefore it make sense to

speak about , Q
m−|α|
z Dαv. Now we consider vn ∈ C∞(Ω) such that vn

W|α|,1(Ω)−→ v, and notice
that:

DαQm
z vn(x) =

∫
Sz

DαPmvn(x,y)ψ(y) dy =

∫
Sz

Pm−|α|vn(x,y)ψ(y) dy = Qm−|α|Dαvn(x).

Passing the above expression to the limit we obtain the wanted equality for v ∈ W1,1(Ω).
To conclude we observe that following the same argument as in Remark 2.5, we have
W1,1(ω,Ω) ⊂ W1,1(Ω).

ut

Lemma 2.7. Let ω ∈ Ap(R2) and z ∈
◦
N (T ), if v ∈ Wk,p(ω, Sz) with 0 ≤ k ≤ 1 the following

inequality holds,

∥∥Q1
z

∥∥
L∞(Sz)

≤ C(m,ψ)h−2z ‖1‖Lq(ω− qp )

k∑
l=0

hlz|v|Wl,p(ω,Sz)
,

where hz is the largest diameter of the element that form Sz.

Proof. From the de�nition of Qm
z we have,
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‖Qm
z ‖L∞(Sz)

=

∥∥∥∥∥∥
∫
Sz

∑
|α|≤m

1

α!
Dαv(x)(y − x)αψz(x) dx

∥∥∥∥∥∥
L∞(Sz)

≤ 1

α!

∑
|α|≤m

∥∥∥∥∫
Sz

Dαv(x)(y − x)αψz(x) dx

∥∥∥∥
L∞(Sz)

≤ 1

α!

∑
|α|≤m

∥∥∥∥∫
Sz

Dαv(x)(y − x)αψz(x)ω
1
pω−

1
p dx

∥∥∥∥
L∞(Sz)

.

If we �x k ∈ [0,m] from the above inequality we get,

‖Qm
z ‖L∞(Sz)

≤ 1

α!

∑
|α|≤m

∥∥∥∥∫
Sz

Dαv(x)(y − x)αψz(x)ω
1
pω−

1
p dx

∥∥∥∥
L∞(Sz)

≤ 1

α!

∑
|α|≤m

∥∥∥∥∫
Sz

Dkv(x)Dα−k[(y − x)αψz(x)
]
ω

1
pω−

1
p dx

∥∥∥∥
L∞(Sz)

≤ 1

α!

∑
|α|≤m

∥∥∥∥∫
Sz

Dkv(x)Dα−k[hαzψz(x)
]
ω

1
pω−

1
p dx

∥∥∥∥
L∞(Sz)

≤ 1

α!

∑
|α|≤m

hαzh
−2
z

∥∥Dα−kψ(x)
∥∥
L∞(Sz)

‖1‖
Lq(ω−

q
p )

∥∥Dkv(x)
∥∥
Lp(ω,Sz)

≤C(m,ψ)‖1‖
Lq(ω−

q
p )
h−2z

m∑
l=0

hlz
∥∥Dkv(x)

∥∥
Lp(ω,Sz)

.

ut

Let us start discussing the approximation property of the averaged Taylor polynomial Q0
zv

and Q1
zv, for functions v ∈ W1,p(ω, Sz).

Lemma 2.8. Let z ∈
◦
N (T ). If v ∈ W1,p(ω, Sz) then the following approximation estimate

holds, ∥∥v −Q0
z

∥∥
Lp(ω,Sz)

≤ Chz‖∇v‖Lp(ω,Sz)
.

Furthermore the following inequality holds,∥∥Dxj(v −Q1
z)
∥∥
Lp(ω,Sz)

≤ Chz
∥∥Dxj∇v

∥∥
Lp(ω,Sz)

.

Proof. We de�ne the transformation,

Fz : x 7→ x, x =
z− x

hz
,

we will also de�ne Sz = Fz(Sz) and v(x) = v(x). Let Q
0
v be de�ned as follows,

Q
0
v =

∫
Sz

vψ dx,
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then thanks to the way we de�ned Fz we have that the support of ψ is contained in Sz.

Q0
z =

∫
Sz

vψz dx =

∫
Sz

vψz(x)h2z dx =

∫
Sz

vψ(x) dx = Q
0
v.

Using Theorem 0.3 we have that ωz = ω ◦F−1z ∈ Ap(R2), since Fz is a translation combined
with an isotropic dilation. Combining the last two statement together with the fact Cp,ωz =
Cp,ωz we have the following estimate,∫

Sz

ω
∣∣v −Q0

zv
∣∣p dx = h2z

∫
Sz

ω
∣∣v −Q0

zv
∣∣p dx. (2.12)

Given the assumption (2.9) we have diam(Sz) ≈ 1, combined with

∫
Sz

ψ dx = 1 we have that∫
Sz

v −Q0
v = 0, which will allows us to apply Theorem 2.3 to conclude,

∥∥∥v −Q0

zv
∥∥∥
Lp(ωz,Sz)

≤ C(σT , ωz, ψ)‖∇xv‖Lp(ωz,Sz)
.

Combining this last inequality with (2.12) and changing variable from x to x we have,

∥∥v −Q0
zv
∥∥
Lp(ωz,Sz)

=h2z

∫
Sz

ω
∣∣v −Q0

zv
∣∣p dx

≤h2zC(σT , ωz, ψ)‖∇xv‖Lp(ωz,Sz)
= h2zC(σT , ωz, ψ)‖∇xv‖Lp(ωz,Sz)

.

In order to estimate
∥∥Dxj(v −Q1

z)
∥∥
Lp(ω,Sz)

we de�ne Q
1
v(y) as follows,

Q
1
v(y) =

∫
Sz

(
v(x) +∇xv(x) · (y − x)

)
ψ(x) dx.

As in the previous case we have the identity Q1
z(y) = Q

1
v(y), furthermore since Q

1
v(y) the

quantity ∂yiQ
1
v(y) is constant and therefore,∫

Sz

∂xi

(
v(x)−Q1

v(x)
)
ψ(x) dx = 0.

Since ∂xi

(
v(x) − Q

1
v(x)

)
has vanishing mean we can follow the same argument presented

above to obtain, ∥∥Dxj(v −Q1
z)
∥∥
Lp(ω,Sz)

≤ Chz
∥∥Dxj∇v

∥∥
Lp(ω,Sz)

.

ut

Lemma 2.9. Let z ∈
◦
N and v ∈ W2,p(ω, Sz) then we have the following approximation esti-

mate,
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z

∥∥
Lp(ω,Sz)

≤ C
(
Cp,ω, σT , ψ

)
h2z‖v‖W2,p(ω,Sz)

.

Proof. First we apply Proposition 2.6 to observe the following,

v−Q1
zv =

(
v−Q1

zv
)
−Q0

z

(
v−Q1

zv
)
−Q0

z

(
Q1

zv− v
)
, ∇

(
v−Q1

zv
)

= ∇v−Q0
z∇v. (2.13)

If we apply the previous Lemma twice we then obtain,∥∥∥(v −Q1
zv
)
−Q0

z

(
v −Q1

zv
)∥∥∥
Lp(ω,Sz)

≤ Chz

∥∥∥∇(v −Q1
z

)∥∥∥
Lp(ω,Sz)

≤ Ch2z|v|W2,p(ω,Sz)
.

Therefore from (2.13) the only term we need to control is Q0
z

(
Q1

zv − v
)
, which using again

Proposition 2.6 is equivalent to controlling Q0
z

(
Q1

zv −Q0
zv
)
. Now we notice that for all linear

polynomials p we have Q0
z

(
Q1

zp−Q0
zp
)

= 0 and therefore we can add and subtract Q0
z

(
Q1

zQ
1
zv−

Q0
zQ

1
z

)
freely. We start from Q0

z

(
Q1

zv −Q0
zv
)
and we subtract Q0

z

(
Q1

zQ
1
zv −Q0

zQ
1
z

)
to obtain,

∥∥∥Q0
z

(
Q1

zv − v
)∥∥∥
Lp(ω,Sz)

=

∫
Sz

ω

∫
Sz

∣∣∇(v(x)−Q1
z · (y − x)ψz

)
dy
∣∣p

H.

≤
∫
Sz

ω

∣∣∣∣hpz(∫
Sz

ω
∣∣∇(v(x)−Q1

zv(x))
∣∣p dx)(∫

Sz

ω−
q
pψqz

) p
q

∣∣∣∣ ≤ C
(
Cp,ω, σT , ψ

)
h2pz |v|W2,p(ω,Sz)

,

where in order to obtain the last inequality we used the fact that
∫
Sz
ψz(y) dy = 1 and( ∫

Sz
ω−

q
pψqz

)
is bounded. ut

I don't need to develop this argument further in order to obtain an approximation estimate
also for v−Qm

z . This because in later chapters I will only work with linear �nite element schemes,
but I redirect the reader interested in this results to [79]. Keeping in mind the notation used in
(2.11) it is time to introduce an interpolant for function that are in W2,p(ω,Ω). In particular
given a function v ∈ W2,p(ω,Ω) we de�ne the interpolant I1N as follows,

I1Nv =
∑

z∈
◦
N (T )

Q1
zv(z)φz. (2.14)

Now we will use Lemma 2.7 in order to prove the stability of the interpolant operator I1N with
respect to the Muckenhoupt weighted Sobolev space W2,p(ω, ST).

Proposition 2.10. Let W2,p(ω, Sz) and T be an element of the triangulation T , then the
interpolant operator I1N is stable with respect to the Muckenhoupt weighted Sobolev space
W2,p(ω, ST), i.e. ∣∣I1Nv∣∣W2,p(ω,ST)

≤ |v|W2,p(ω,ST).

Proof. Using the de�nition of I1N , given in (2.14) we have that,
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≤

∑
z∈
◦
N (T )

∥∥Q1
z(z)

∥∥
L∞(Sz)

|φz|W2,p(ω,ST).

Combining the last inequality with Lemma 2.7 we can conclude. ut

Lemma 2.11. Given a function ϕ ∈ L1(ω, Sz) the following identity holds,

I1NQ
1
zϕ = Q1

zϕ.

Proof. This is a consequence of the fact that Q1
zp = p for all linear polynomials p and of

(2.14). ut

Theorem 2.12. Given T ∈ T such that T is not a simplex with vertex on the boundary of Ω
and v ∈ W2,p(ω, ST ) we then have the following interpolation estimate,∣∣v − I1Nv∣∣Wk,p(ω,T )

≤ Ch2−kT |v|W2,p(ω,ST )
.

Proof. Since the simplex T doesn't touch the boundary we consider one vertex z of T such that

z ∈
◦
N . From the previous lemma we know that the following identity holds,

v − I1N = v −Q1
zv + I1NQ

1
zv − I1Nv,

and therefore a simple application of the triangular inequality yields:∣∣v − I1N ∣∣Wk,p(ω,T )
≤
∣∣v −Q1

zv
∣∣
Wk,p(ω,ST )

+
∣∣I1NQ1

zv − I1Nv
∣∣
Wk,p(ω,ST )

.

The last inequality together with Proposition 2.10, Lemma 2.8 and Lemma 2.9, yields the
desired interpolation estimate. ut

Corollary 2.13. Given T ∈ T and v ∈ W2,p(ω, ST ) ∩W1,p
0 (ω, ST ) we then have the following

interpolation estimate, ∣∣v − I1Nv∣∣Wk,p(ω,T )
≤ Ch2−kT |v|W2,p(ω,ST )

.

Corollary 2.14. Given T as in (2.1), that also veri�es (2.9), and v ∈ W2,p(ω,Ω)∩W1,p
0 (ω,Ω)

we then have the following interpolation estimate,∣∣v − I1Nv∣∣Wk,p(ω,Ω)
≤ Ch2−kT |v|W2,p(ω,Ω).

It is also possible to prove interpolation result when using norms of di�erent Muckenhoupt
weighted Sobolev spaces using embedding (2.5).

Proposition 2.15. Let p ∈ (1, q], ρ ∈ Aq(R2), ω ∈ Ap(R2) such that (2.6) holds. If v ∈
W1,p(ω,Ω) then there exists a constant vΩ such that the following inequality holds,

‖v − vΩ‖Lq(ρ,Ω) ≤ C diam(Ω)ρ(Ω)
1
qω(Ω)−

1
p‖∇v‖Lp(ω,Ω).
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Proof. Since Ω is open and bounded we can choose 0 < r < R such that the following chain of
inclusions hold,

Br(0) ⊂ Ω ⊂ Ω ⊂ BR(0).

We can use the extension theorem for Muckenhoupt weighted Sobolev spaces proven in [26],

to �nd a
∼
v ∈ W1,p

(
ω,BR(0)

)
such that,∥∥∥∇∼v∥∥∥

Lp
(
ω,BR(0)

) ≤ C‖∇v‖
Lp
(
ω,Ω
).

Using the results contained in [73] and [24] we have the following inequality,

‖v − vΩ‖Lp
(
ω,Ω)
) ≤ ∥∥∥∼v − vΩ∥∥∥

Lp
(
ω,BR(0)

) ≤ CRρ
(
BR(0)

) 1
qω
(
BR(0)

)− 1
p‖∇v‖

Lp
(
ω,Ω
),

where vΩ is the weighted mean of
∼
v over BR(0). Using the strong doubling property we have

ρ(BR(0)) ≤ Cρ(Ω), since ρ(Ω) ≤ ω(BR(0)) the above inequality becomes,

‖v − vΩ‖Lp
(
ω,Ω)
) ≤ CRρ

(
Ω
) 1
qω
(
Ω
)− 1

p‖∇v‖
Lp
(
ω,Ω
).

ut

Corollary 2.16. Let us consider a triangulation T that veri�es the assumption (2.9) and Def-
inition 2.1, p ∈ (1, q], ρ ∈ Aq(R2), ω ∈ Ap(R2) such that (2.6) holds. Then for every T ∈ T
and v ∈ W2,2(ω, ST ) we have,

∥∥∇(v − I1N )
∥∥
Lq(ρ,T ) ≤ C

(
σT , ψ, Cp,ω, Cq,ω

)
hTρ(ST )

1
qω(ST )−

1
p |v|W2,2(ω,ST )

.

Proof. Let consider again T ∈ T and denote z one of the vertices of T . We �rst notice that
since ρ and ω veri�es (2.6), we have thanks to Theorem 1.8 the following embedding,

W2,p
0 (ω,Ω) ↪→W1,q(ρ,Ω).

In view of the above embedding we have the following inequality,∥∥∇(v − I1N )
∥∥
Lq(ρ,T ) ≤

∥∥∇(v −Q1
zv)
∥∥
Lq(ρ,T ) +

∥∥∇(Q1
zv − I1Nv)

∥∥
Lq(ρ,T ).

Using (2.14) and Proposition 2.10 we know that,∥∥∇(Q1
zv − I1Nv)

∥∥
Lq(ρ,T ) ≤ C

∥∥∇(v −Q1
zv)
∥∥
Lq(ρ,T ).

Combining the two last inequalities together with the fact that ∇Q1
zv = Q0

z∇v we get the
following, ∥∥∇(v − I1N )

∥∥
Lq(ρ,T ) ≤

∥∥∇v −Q0
z∇v

∥∥
Lq(ρ,T ).
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Since Q0
z∇v is the average value of ∇v on T we can conclude applying Proposition 2.15. ut





3

Finite Element Method

In this chapter I would like to study the application of the �nite element method to domains
presenting point singularities, in particular I'll focus my attention to the domain depicted in
Figure 1.2; it is just a matter of calculation to generalize the idea here presented to domains
with sharper corners. We have already discussed in the previous chapter that when the domain
Ω presents a re-entrant corner we can not use the classical elliptic regularity which gives a nice
shift triplet. It is well known that due to the absence of the shift triplet previously mentioned,
the �nite element method doesn't have the usual rate of convergence. This phenomena is not
only observed in �nite element methods, I redirect the reader interested in this phenomena
for �nite di�erence schemes to [89]. The above described phenomena it known in the engi-
neering community as the polluting e�ect of the corner. The remainder of this chapter will
be structured as follows: I'll discuss in more detail the consequences of the polluting e�ect of
the corner in the context of the standard conforming �nite element method and present the
standard a priori error estimate analysis for the �nite element method in domains presenting
a re-entrant corner; next I'll introduce the penalty �nite element method and perform an a
priori error analysis for this method. Once the penalty �nite element method is introduced, I'll
show numerical evidence that the penalty �nite element method, with a speci�c choice of the
penalisation term, can retrieve optimal convergence with respect to the Sobolev spaceW 5

3
,2(Ω)

when the error is measured in the L2(Ω) norm. Next I'll show the impossibility of retrieving
the optimal order of convergence using a weighted duality argument. It is important to mention
that penalty �nite element method is not the only or the most e�cient method to deal with
domain with re-entrant corners, but in my view it presents a very interesting case study for
the di�culty of proving the result observed numerically and for its intimate connection with
the Nitsche method that in recent years has become more and more popular. Let me redirect
the reader interested in using �nite element on domains with corners to more useful result.
The hp-�nite element method on domains with corners has been study by I. Babuska and B.
Q. Guo, as far as I'm aware of they were also the �rst ones to realize that weighted Sobolev
spaces are the correct setting where to study the error of �nite element methods when dealing
with domains presenting re-entrant corner, more information can be found in [57, 5, 58, 59].
I. Babuska and B. Q. Guo didn't limit themselves to the Poisson problem they also treated
problems of elasticity and the Stokes problem, I redirect the reader interested in this kind
of result to [56, 60, 61]. An other approach would be to use classical �nite element methods
together with mesh grading, [6, 8, 9, 10]. Furthermore it is also possible to construct �nite
element schemes solvable using multigrid methods, as shown in [19, 18, 21]. Last it is possi-
ble to consider the energy associated with the problem to obtain least squares �nite element
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method that are optimal when dealing with singular solutions as shown in [33]. This last idea
is di�erent from what discussed in [44, 81, 80], involving an energy correcting term.

1 Conforming Finite Elements

In this section we will show an a priori error analysis for the conforming �nite element method
using standard techniques presented in [27]. In particular we will focus our attention to domains
presenting a point singularity. To simplify the exposition of the idea here presented I'll focus
my attention to the domain Ω ⊂ R2 depicted in Figure 1.2. Let us consider once again the

mesh T of the domain Ω and the discrete space V and
◦
V introduced in (2.10). We consider our

toy problem (1.16) with data f ∈ L2(Ω), whose solution from now on will be denoted as u0.
We now introduce the projection operator Π ◦

V
that will give the �nite element approximation

of u0 on the discrete space
◦
V , i.e.

Π ◦
V

:W1,2
0 (Ω)→

◦
V , (3.1)(

∇Π ◦
V
u,∇vh

)
L2(Ω)

=
(
∇u,∇vh

)
L2(Ω)

∀vh ∈
◦
V .

As usual we ask ourselves if this projection is well de�ned. In order to answer this question we
can apply Hilbert projection theorem together with the following Lemma.

Lemma 1.1. The discrete spaces V and
◦
V are closed Hilbert linear subspaces of W1,2(Ω) and

W1,2
0 (Ω) respectively.

Proof. I redirect the reader interested in this result to [27]. ut

Proposition 1.2. Let X be a Hilbert space and Y a closed linear subspace of X, then for every
x in X there exists a unique y in Y such that,

1. ‖x− y‖X = inf
z∈Y
‖x− z‖X ,

2. the element y above introduced is uniquely characterized by, (x, z)X = (y, z)X ∀z ∈ Y .

Proof. I redirect the reader interested in this result to [22], Chapter 5. ut

Corollary 1.3. The projection operator Π ◦
V
is well de�ned.

Proof. First we notice that the bilinear form a(u, v) = (∇u,∇v)L2(Ω) is a scalar product on

W1,2
0 (Ω) because we have proven it is coercive in Corollary 2.11 and it is obviously continuous

by Hölder inequality. Furthermore this scalar product is equivalent to (·, ·)W1,2(Ω). Since
◦
V is a

closed linear subspace of W1,2
0 (Ω) we can apply the Hilbert projection and conclude. ut

As the reader have probably already noticed such a projection is of limited use since we
need to know a priori the solution u0 to (1.16) in order to compute Π ◦

V
u0. Using (1.16) we

know that (∇u0,∇vh)L2(Ω) = (f, vh)L2(Ω), hence we can combine this together with (3.1) to
characterize the projection Π ◦

V
u0 with respect to the data f , i.e.
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∇Π ◦

V
u0,∇vh

)
L2(Ω)

=
(
f, vh

)
L2(Ω)

∀vh ∈
◦
V . (3.2)

This characterization of the projection (3.1) becomes very handy when we notice that since
◦
V

is a discrete space we can expand the function vh ∈
◦
V in terms of the basis functions as done

in (2.11). This combined with the linearity of the scalar product, yields the following set of
equations:

∑
z∈
◦
N(T )

uhz

(
∇φz,∇φη

)
L2(Ω)

=
(
f, φη

)
L2(Ω)

∀η ∈
◦
N(T ),

KUh = F, (3.3)

Kz,η =
(
∇φz,∇φη

)
L2(Ω)

Fη =
(
f, φη

)
L2(Ω)

∀z, η ∈
◦
N(T ),

where K is usually called the sti�ness matrix, F is usually called the load vector and Uh

contains the value of Π ◦
V
u0 at the nodes of the mesh. We will also call uh0 the projection Π ◦

V
u0

to stress the fact that it has been computed using (3.3). We now notice that (3.2) becomes,

a0(u
h
0 , v

h) =
(
∇uh0 ,∇vh

)
L2(Ω)

=
(
f, vh

)
L2(Ω)

∀vh ∈
◦
V . (3.4)

Proposition 1.4. Let us be given a mesh T that veri�es (2.9) and De�nition 2.1. Let u0 be
the solution of (1.16) and uh0 as above then the following energy error estimates holds,∥∥u0 − uh0∥∥W1,2(Ω)

≤ C(Ω)h
2
3
−ε‖f‖L2(Ω).

Proof. First of all I would like to warn the reader that the proof here included is slightly
di�erent from the standard one, because I wanted to make use of the interpolant constructed
in the previous chapter. The classical proof will involve interpolation estimate in fractional
Sobolev space, such as [38], and an argument similar to the one presented in [27]. We begin
observing that,

α
∥∥u0 − uh0∥∥2W1,2(Ω)

(1.17)

≤ a0(u0 − uh0 , u0 − uh0) = a0(u0 − uh0 , u0)

the last equality follows from Galerkin orthogonality, i.e. a0(u0 − uh0 , vh) = (f, vh)L2(Ω) −
(f, vh)L2(Ω) = 0 for all v ∈

◦
V .

Once again using Galerkin orthogonality we observe that a0(u0 − uh0 , I1Nu0) = 0 and therefore
we have,



46 Finite Element Method

α
∥∥u0 − uh0∥∥2W1,2(Ω)

(1.17)

≤ a0(u0 − uh0 , u0 − I1Nu0)
H.

≤
∥∥u0 − uh0∥∥W1,2(Ω)

∥∥u0 − I1Nu0∥∥W1,2(Ω)

α
∥∥u0 − uh0∥∥W1,2(Ω)

≤
∥∥u0 − I1Nu0∥∥W1,2(Ω)

.

To conclude we observe that ‖u0 − I1Nu0‖W1,2(Ω) ≤ Ch
2
3‖f‖L2(Ω), this because of the fact that(

H1
0 (Ω),L2(|x|

2
3 , Ω),W2,2(|x|

2
3 , Ω)

)
is a shift triplet for (1.16) together with Corollary 2.16

once we observe that,

ρ(ST ) =

∫
ST

dx ≤ Ch2T ≤ Ch2, ω(ST ) =

∫
ST

|x|
2
3dx ≤ Ch

8
3
T ≤ Ch

8
3 .

ut

Now that we have an energy estimate for the error of the conforming �nite element method
I would like to proceed with the L2(Ω) a priori error analysis, but before I would like to make
an observation:

α
∥∥u0 − uh0∥∥2W1,2(Ω)

(1.17)

≤
(
∇(u0 − uh0),∇(u0 − uh0)

)
L2(Ω)

G.O.
=
(
∇u0,∇(u0 − uh0)

)
= (f, u0 − uh0)L2(Ω),∥∥u0 − uh0∥∥2W1,2(Ω)

H.

≤
‖f‖L2(Ω)

α

∥∥u0 − uh0∥∥L2(Ω)
. (3.5)

This last inequality combined with Proposition 1.4 tells us that the best possible error estimate
I can obtain in the L2(Ω) norm is of the form,∥∥u0 − uh0∥∥L2(Ω)

≤ Ch
4
3
−ε‖f‖L2(Ω).

Indeed is possible to prove using the standard Aubin-Nitsche duality argument that the error
in the L2(Ω) norm decays as described in the previous equation.

Theorem 1.5. Given a mesh T that veri�es (2.9) and De�nition 2.1, let u0 be the solution of
(1.16) and uh0 as in (3.4). Then the following energy error estimates holds,∥∥u0 − uh0∥∥L2(Ω)

≤ C(Ω)h
4
3
−ε‖f‖L2(Ω).

Proof. To begin we de�ne the quantity εh = u0 − uh0 and consider the dual problem, �nd
w0 ∈ W1,2

0 (Ω) such that

a0(w0, v) =
(
∇w0,∇v

)
L2(Ω)

=
(
εh, v

)
L2(Ω)

∀v ∈ W1,2
0 (Ω).

Once again the existence and uniqueness of a solution for the dual problem follows from Lax-
Milgram. Now we observe that if we take v = εh then the above variational equation give us
the following identity,
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a0(w0, εh) =
(
∇w0,∇εh

)
L2(Ω)

=
(
εh, εh

)
L2(Ω)

= ‖εh‖2L2(Ω).

Once again we can observe that thanks to the Galerkin orthogonality we know that a0(I
1
Nw0, εh) =

a0(I
1
Nw0, u0)− a0(I1Nw0, u

h
0) = (f, I1Nw0)L2(Ω) − (f, I1Nw0)L2(Ω) = 0. We have:

a0(w0 − I1Nw0, εh) = a0(w0, εh) =
(
∇w0,∇εh

)
L2(Ω)

=
(
εh, εh

)
L2(Ω)

= ‖εh‖2L2(Ω).

Using ‖w0 − I1Nw0‖ ≤ Ch
2
3
−ε‖εh‖L2(Ω) we have the following inequality,

‖εh‖2L2(Ω) = a0(w0 − I1Nw0, εh)
H.

≤
∣∣w0 − I1Nw0

∣∣
W1,2(Ω)

|εh|W1,2(Ω)

≤ Ch
2
3
−ε‖εh‖L2(Ω)h

2
3
−ε‖f‖L2(Ω),

dividing both sides by ‖εh‖L2(Ω) we yield,

‖εh‖L2(Ω) ≤ Ch
4
3
−2ε‖f‖L2(Ω).

ut

We can observe that the numerical experiment presented in Figure 4.1 con�rm the validity
of the a priori error estimate proven in Proposition 1.4 and Theorem 1.5.

2 Penalty Finite Elements

In this section I would like to study a di�erent �avour of conforming �nite elements, known
as penalty �nite element method. The idea of penalty �nite element methods is to solve (1.18)
rather then (1.16), since as we have discussed in the �rst chapter the solution of (1.18) converges
to (1.16) as ε→∞. Penalty �nite element method enjoyed a brief moment of popularity in the
early days of �nite element methods: in particular estimate for the numerical error of penalty
�nite element method have been studied �rst by I. Babuska and J.P. Aubin in [7] and [3]. The
estimate provided by Babuska and Aubin revealed sub-optimal in the cases studied by M. Utku
and C. M. Carey [87]. A later explanation of the phenomena observed by M. Utku and C. M.
Carey is presented by Zhong Sci in [85], under the assumption u ∈ W2,2(Ω). Furthermore error
estimate assuming u ∈ W2,2(Ω) are presented by J.T. King and M. S. Serbin in [65, 66]. A
similar problem has been studied also by J.W. Barrett and C. M. Elliot in [11] and by Z. Li.
in [69]. Let me now introduce the discrete variational problem corresponding to (1.18),

Find uhε ∈ V such that ∀v ∈ V (Ω) :

aε(u
h
ε , v) =

(
∇uhε ,∇v

)
L2(Ω)

+ ε−1
(
uhε , v

)
L2(∂Ω)

=
(
f, v
)
L2(Ω)

(3.6)

We will begin presenting the argument introduced in [85] to obtain an error estimate inW1,2(Ω)
for non smooth domain Ω. In particular for the rest of the chapter we wil focus our attention on
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the case where the bilinear form aε(·, ·) depends on the chosen mesh, i.e. ε = h−σ. Furthermore
for the remainder of this chapter we will assume the triangulation T associated with the discrete
space V veri�es (2.9) and De�nition 2.1.

Remark 2.1. It is clear that the ε appearing inWs−ε,p is di�erent from the ε in (1.18). In order
to avoid heavy notations from now on I will drop the dependence on ε when writing Ws,p.

Lemma 2.2. Let u0 ∈ W
5
3
,2(Ω), uhε ∈ V , be respectively the solution of (1.16) and (3.6), with

f ∈ L2(Ω) and ε = h−σ. Then the following inequality holds:

∣∣u0 − uhε ∣∣2W1,2(Ω)
+ h−σ

∫
∂Ω

(
∂u0
∂n

hσ + uhε

)2

≤
∣∣u0 − vh∣∣2W1,2(Ω)

+ h−σ
∫
∂Ω

(
∂u0
∂n

hσ + vh
)2

,

(3.7)
for all vh ∈ V .

Proof. Since uhε minimizes the penalised energy (1.9) in V h one has,

a0(u
h
ε , u

h
ε )+h−σ

∫
∂Ω

∣∣uhε ∣∣2 ds−2(f, uhε )L2(Ω) ≤ a0(v
h, vh)+h−σ

∫
∂Ω

∣∣vh∣∣2 ds−2(f, vh)L2(Ω). (3.8)

Moreover from the fact that u0 is the solution of (1.16) in W1,2
0 we know that a0(u0, v

h) −∫
∂Ω

∂u0
∂n

vh ds = (f, vh)L2(Ω), and therefore the above inequality becomes,

a0(u
h
ε , u

h
ε ) + h−σ

∫
∂Ω

∣∣uhε ∣∣2 ds− 2a0(u0, u
h
ε )− 2

∫
∂Ω

∂u0
∂n

uhε ds

≤ a0(v
h, vh) + h−σ

∫
∂Ω

∣∣vh∣∣2 ds− 2a0(u0, v
h)− 2

∫
∂Ω

∂u0
∂n

vh ds.

Rewriting the left hand side of (3.7) in terms of the bilinear form a0(·, ·) we obtain,

∣∣u0 − uhε ∣∣2W1,2(Ω)
+ h−σ

∫
∂Ω

(
hσ
∂u0
∂n

+ uhε

)2

ds

= a0(u0, u0) + hσ
∫
∂Ω

(
∂u0
∂n

)2

ds+ a0(u
h
ε , u

h
ε ) + h−σ

∫
∂Ω

(
uhε
)2
ds− 2a0(u

h
ε , u0)− 2

∫
∂Ω

∂u0
∂n

uhε

≤ a0(u0, u0) + hσ
∫
∂Ω

(
∂u0
∂n

)2

ds+ a0(v
h, vh) + h−σ

∫
∂Ω

(
uhε
)2
ds− 2a0(v

h, u0)− 2

∫
∂Ω

∂u0
∂n

vh

=
∣∣u0 − vh∣∣2W1,2(Ω)

+ h−σ
∫
∂Ω

(
∂u0
∂n

hσ + vh
)2

ds (3.9)

ut

The above lemma allows to prove an a priori error estimates for penalty �nite element
methods with respect to the W1,2(Ω) norm also in the context of non smooth domains.
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Theorem 2.3. Suppose we are in the hypothesis of the previous Lemma, then:∥∥u0 − uhε∥∥W1,2(Ω)
≤ Chµ‖f‖L2(Ω)

where µ = min
{

2
3
, σ
2
, 7
6
− σ

2

}
.

Proof. We take vh = I1N and use Lemma 2.2 to obtain the following,

∣∣u0 − uhε ∣∣2W1,2(Ω)
+ h−σ

∫
∂Ω

(
∂u0
∂n

hσ + uhε

)2

ds

≤
∣∣u0 − I1Nu0∣∣2W1,2(Ω)

+ h−σ
∫
∂Ω

(
∂u0
∂n

hσ + I1Nu0

)2

ds. (3.10)

Using the interpolation property ‖u0 − I1Nu0‖W1,2(Ω) ≤ Ch
2
3‖f‖L2(Ω) presented in the previous

section together with the trace inequality we obtain,

h−σ
∫
∂Ω

(
∂u0
∂n

hσ + I1Nu0

)2

ds ≤ 2

(
hσ
∫
∂Ω

(
∂u0
∂n

)2

ds+ h−σ
∫
∂Ω

(
I1Nu0

)2
ds

)
≤ C(hσ + h

7
3
−σ)‖f‖L2(Ω).

Once again thanks to the interpolation property above we get,∣∣u0 − uhε ∣∣W1,2(Ω)
≤ Ch

2
3‖u0‖W 5

3 ,2(Ω)
≤ Ch

2
3‖f‖L2(Ω)

and therefore,

h−σ
∫
∂Ω

(
∂u0
∂n

hσ + uhε

)2

ds+
∣∣u0 − uhε ∣∣W1,2(Ω)

≤ Ch2µ‖f‖L2(Ω).

Last using the coercivity of the bilinear form aε(·, ·) we get,

∥∥u0 − uhε∥∥2W1,2(Ω)
≤ C

(
h−σ

∫
∂Ω

(
uhε
)2
ds+

∣∣u0 − uhε ∣∣W1,2(Ω)

)
≤ Ch2µ‖f‖Wk,2(Ω).

ut

Remark 2.4. For the previous theorem to work, we need to prove that we have a coercivity
constant independent of ε,

aε(v, v) =

∫
Ω

|∇v|2 dx+ ε−1
∫
∂Ω

|v|2 ds ≥
∫
Ω

|∇v|2 dx+

∫
∂Ω

|v|2 ds ≥ C(Ω)‖v‖L2(Ω),

the last inequality was obtained using Poincaré-Friedrichs inequality, I redirect the reader
interested in the proof of this result to [20], Chapter 10.
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Remark 2.5. Starting with (3.8) we can get a di�erent version of equation (3.9),

h−σ
∫
∂Ω

(
uhε
)2
ds ≤

∣∣u0 − vh∣∣2W1,2(Ω)
+ h−σ

∫
∂Ω

(
vh
)2
ds+ h−σ

∫
∂Ω

(
∂u0
∂n

hσ
)2

ds.

In fact taking the interpolant constructed in the previous chapter as vh, we notice that I1Nu0
will be null on ∂Ω as long as Ω is a polygon. Such phenomenon occurs because the triangulation
exactly matches the boundary. Thanks to the above observation one gets on polygonal domains,

h−σ
∫
∂Ω

(
uhε
)2
ds ≤ hσ

∥∥∥∥∂u0∂n

∥∥∥∥
L2(Ω)

≤ Chσ‖f‖2L2(Ω).

In particular this modi�cation to Lemma 2.2 improves the error estimate provided in Theorem
2.3. ∥∥u0 − uhε∥∥W1,2(Ω)

≤ Chµ‖f‖L2(Ω)

where µ = min
{

2
3
, σ
2

}
. We notice that this error bound is also observed in the numerical

experiments I carried out, as we can see from Figure 4.2.

We are now interested in the L2(Ω) error. To achieve this I'll present the duality trick by I.
Babuska, �rst introduced in [7].

Theorem 2.6. Assuming we are in the hypothesis of Lemma 2.2, we have:∥∥u0 − uhε∥∥L2(Ω)
≤ Chα‖f‖L2(Ω),

where α = min
{
µ+ 2

3
, µ+ 7

6
− σ

2
, 7
6
, σ, µ+ σ

2

}
.

Proof. Let us introduce the quantity εh := u0 − uhε and observe that by Lax-Milgram theorem
there exists w ∈ W1,2

0 (Ω) such that,

a0(w, v) = (εh, v)L2(Ω) ∀v ∈ W1,2
0 (Ω),

in particular Corollary 3.7 tells us that w ∈ W 5
3
−ε,2(Ω) and

‖w‖
W

5
3−ε,2(Ω)

≤ ‖εh‖L2(Ω).

Once again we use the fact that if u0 solves the elliptic problem (1.16) and v belongs toW1,2(Ω)
then,

a0(u0, v) = (f, v)L2(Ω) +

(
∂u0
∂n

, v

)
L(∂Ω)

. (3.11)

Since w is the solution of the dual problem and using (3.11) we know that,
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a0(εh, w) = (εh, εh)L2(Ω) +

(
εh,

∂w

∂n

)
L2(∂Ω)

,

a0(εh, w) + a0(εh, I
1
Nw − w) = h−σ(εh, I

1
Nw)L2(∂Ω) −

(
∂u0
∂n

, I1Nw

)
L2(∂Ω)

,

where to obtain the last equality we have used the fact that a0(u
h
ε , v) = (f, v)L2(Ω) −

h−σ
∫
∂Ω

uhεv ds.

Now we can rewrite (εh, εh)L2(Ω), as

∣∣(εh, εh)L2(Ω)

∣∣ ≤ ∣∣a0(εh, I1Nw − w)
∣∣+ h−σ

∣∣(εh, I1Nw)L2(∂Ω)

∣∣+

∣∣∣∣∣
(
∂u0
∂n

, I1Nw

)
L2(∂Ω)

∣∣∣∣∣ (3.12)
+

∣∣∣∣∣
(
εh,

∂w

∂n

)
L2(∂Ω)

∣∣∣∣∣.
The �rst term in (3.12) can be controlled using the usual interpolation property and Theorem
2.3. We now consider the functional,

R(v) = a0(u0 − v, u0 − v) + h−σ
(
∂u0
∂n

hσ + v,
∂u0
∂n

hσ + v

)
L2(∂Ω)

.

Such functional is minimized by u0 and following the same reasoning presented in the proof of
Theorem 2.3 one gets, R(uhε ) ≤ Ch2µ‖f‖L2(Ω). Therefore

h−σ
(
∂u0
∂n

hσ + uhε ,
∂u0
∂n

hσ + uhε

)
L2(∂Ω)

≤ Ch2µ‖f‖2L2(Ω)(
∂u0
∂n

hσ + uhε ,
∂u0
∂n

hσ + uhε

)
L2(∂Ω)

≤ Ch2µ+σ‖f‖2L2(Ω),(
∂u0
∂n

hσ,
∂u0
∂n

hσ
)
L2(∂Ω)

+ 2

(
∂u0
∂n

hσ, uhε

)
L2(∂Ω)

+
(
uhε , u

h
ε

)
L2(∂Ω)

≤ Ch2µ+σ‖f‖2L2(Ω) (3.13)

We now use Cauchy's inequality with a parameter β to observe that,∣∣∣∣∣
(
hσ
∂u0
∂n

, uhε

)
L2(∂Ω)

∣∣∣∣∣ ≤ h2σ

β

∥∥∥∥∂u0∂n

∥∥∥∥2 + β
∥∥uhε∥∥2

Choosing β = 1
2
then (3.13) becomes,

(uhε , u
h
ε )L2(∂Ω) ≤ C

(
h2µ+σ‖f‖2L2(Ω) + h2σ

(
∂u0
∂n

,
∂u0
∂n

)
L2(∂Ω)

)
. (3.14)



52 Finite Element Method

Combining (3.14), (3.12), Theorem 2.3 and the usual interpolation property we can conclude,

∣∣(εh, εh)L2(Ω)

∣∣ ≤MChµ‖f‖L2(Ω)h
2
3‖εh‖L2(Ω) + Ch−σ

(
hµ+

σ
2 ‖f‖L2(Ω) + hσ

∥∥∥∥∂u0∂n

∥∥∥∥
L2(∂Ω)

)
h

7
6‖εh‖L2(Ω)

+C‖εh‖L2(Ω)h
7
6

∥∥∥∥∂u0∂n

∥∥∥∥
L2(∂Ω)

+ C

(
hµ+

σ
2 ‖f‖L2(Ω) + hσ

∥∥∥∥∂u0∂n

∥∥∥∥
L2(∂Ω)

)
‖εh‖L2(Ω)

‖εh‖L2(Ω) ≤MChα‖f‖L2(Ω).

Since we are using the continuity of a0(·, ·), M doesn't explode as ε→ 0. ut

Remark 2.7. Since γ0(I
1
Nw) = 0 then (3.12) becomes,

∣∣(εh, εh)L2(Ω)

∣∣ ≤ ∣∣a0(εh, I1Nw − w)
∣∣+

∣∣∣∣∣
(
εh,

∂w

∂n

)
L2(∂Ω)

∣∣∣∣∣,
following the same reasoning presented in the proof of Theorem 2.6 this yields,

‖εh‖L2(Ω) ≤MChα‖f‖L2(Ω),

where α =
{
µ+ 2

3
, σ, µ+ σ

2

}
.

If we combine this comment with Remark 2.5 we get, α =
{

4
3
, 2
3

+ σ
2
, σ
}
.

A careful reader might notice that for both the error estimates inW1,2(Ω) and in L2(Ω) we
�rst presented a general error estimates and then in a sequent remark noticed how the fact that
γ0(I

1
Nw) = 0 a�ects the error estimates just proven. This because the interpolant presented in

the previous chapter is a particular case of the construction made in [79], and we want to leave
the result in a usable form also for future generalisation with other form of the interpolant
presented in [79].
We notice that the numerical experiments presented in Figure 4.3 con�rm the a priori estimates
presented in Remark 2.7, but also show an interesting phenomena i.e. the estimate presented in
the above Remark are suboptimal for σ = 5

3
. The next sections will be devoted to observation

regarding this behaviour.

3 Weighted Duality Argument

The originally intended name for this chapter was �68 ways not to prove the numerical phe-
nomena observed at the end of the previous section�, but instead of showing to the reader many
unsuccessful proofs I opted to argue why it is not possible using a duality argument to retrieve
optimal rate of convergence in L2(Ω) when σ = 5

3
. First I would like to show the reader why an

argument like the one in (3.5) does not apply in the context of penalty �nite element method
and therefore there might still be hope of retrieving a 5

3
rate of convergence in L2(Ω) even if
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in W1,2(Ω) we only have a 2
3
rate of convergence. We know from Remark 2.4 that we have for

penalty �nite element methods a coercivity constant that is independent from h and therefore
we can write,∥∥u0 − uhε∥∥2W1,2(Ω)

C(Ω)
≤ aε(u0 − uhε , u0 − uhε ) ≤ aε(u0, u0 − uhε )− aε(uhε , u0 − uhε )

≤ aε(u0, u0 − uhε )− aε(uhε , u0) + aε(u
h
ε , u

h
ε )

≤ aε(u0, u0 − uhε )− (f, uhε )L2(Ω) − (∂nu0, u
h
ε )L2(∂Ω) + (f, uhε )L2(Ω)

≤ aε(u0, u0 − uhε )− (∂nu0, u
h
ε )L2(∂Ω)

≤ (f, u0 − uhε )L2(Ω) − 2(∂nu0, u
h
ε )L2(∂Ω)

≤ ‖f‖L2(Ω)

∥∥u0 − uhε∥∥L2(Ω)
− 2(∂nu0, u

h
ε )L2(∂Ω),

therefore we have the following inequality,∥∥u0 − uhε∥∥2W1,2(Ω)
≤ C(Ω)‖f‖L2(Ω)

∥∥u0 − uhε∥∥L2(Ω)
− C(Ω)2(∂nu0, u

h
ε )L2(∂Ω).

Since there is no guarantee that C(Ω)2(∂nu0, u
h
ε )L2(∂Ω) is positive, we still can retrieve a 5

3
rate

of convergence in L2(Ω) even if in W1,2(Ω) we only have a 2
3
rate of convergence. Going back

to the proof of the L2(Ω) error estimate for penalty �nite elements presented in the previous
section we notice that a key step of both Babuska and Aubin-Nitsche duality arguments is to
bound from above the quantity, |a0(εh, I1Nw − w)|. Furthermore in both proof of Theorem 1.5
and Theorem 2.6 we showed that the best possible estimate we can obtain is of the form,∣∣a0(εh, I1Nw − w)

∣∣ ≤ Ch
4
3‖εh‖L2(Ω),

while ideally we are searching for an error estimate of the following form when σ = 5
3
,

∣∣a0(εh, I1Nw − w)
∣∣ ≤ Ch

5
3‖εh‖L2(Ω).

Once again this mismatch between the error estimate that we have and the one that we want
is due to the polluting e�ect of the corner. In fact since u0, w0 only lives in W 5

3
,2(Ω) we can

only have error estimates of the form,∥∥u0 − uh0∥∥W1,2(Ω)
≤ Ch

2
3‖f‖L2(Ω)

∥∥w0 − I1Nw0

∥∥
W1,2(Ω)

≤ Ch
2
3‖ε‖L2(Ω),∥∥u0 − uhε∥∥W1,2(Ω)

≤ Ch
2
3‖f‖L2(Ω)

∥∥w − I1Nw∥∥W1,2(Ω)
≤ Ch

2
3‖ε‖L2(Ω).

respectively for the Aubin-Nitsche duality trick and the Babuska duality trick. Now the reader
might think, as the writer did when �rst dealing with this problem, that since the 4

3
rate of

convergence is caused by the fact that u0, w0 ∈ W
5
3
,2(Ω) a good way of solving this problem

is to take full advantage of the regularity results we have proven in the previous section for
Muckenhoupt weighted Sobolev spaces and domain with point singularities. In particular the
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key idea here is to evaluate the error norm of εh in aW2,2(|x|−γ, Ω) while we evaluate the error
norm of w0 − I1Nw0 in a W2,2(|x|γ, Ω), i.e.

a0(εh, I
1
Nw − w) =

∫
Ω

∇εh∇
(
w0 − I1Nw0

)
dx =

∫
Ω

∇εh|x|γ∇
(
w0 − I1Nw0

)
|x|−γ dx

H.

≤ |εh|W1,2(|x|−γ ,Ω)

∣∣w − I1Nw∣∣W1,2(|x|γ ,Ω)
. (3.15)

At this point we can use Corollary 2.16 to provide estimates for |w − I1Nw|W1,2(|x|−γ ,Ω). Further-

more we will assume that uhε behaves as the interpolant I1Nu0 in W1,2(|x|γ, Ω). In particular
once we observe that for weights of the form ω(x) = |x|γ the following chain of inequality holds,

ω(ST ) =

∫
ST

|x|γ dx ≤
∫
Br(σT ,hT )(0)

|x|γ dx ≤ C(σT )hγ+2

then Corollary 2.16 yields the following,

|εh|W1,2(|x|−γ ,Ω) ≈
∣∣u0 − I1Nu0∣∣W1,2(|x|−γ ,Ω)

≤ C(Ω)hh
γ
2
+1h−

4
3‖f‖L2(|x|−γ ,Ω)

≤ C(Ω)h
γ
2
+ 2

3‖f‖L2(|x|−γ ,Ω),∣∣w0 − I1Nw0

∣∣
W1,2(|x|γ ,Ω)

≤ C(Ω)hh−
γ
2
+1h−

4
3‖εh‖L2(|x|γ ,Ω) ≤ C(Ω)h

2
3
− γ

2 ‖εh‖L2(Ω), (3.16)

and therefore (3.15) gives us for all positive γ ∈ A2(R2) the estimate that comes next, i.e.

a0(εh, I
1
Nw − w)

H.

≤ |εh|W1,2(|x|γ ,Ω)

∣∣w − I1Nw∣∣W1,2(|x|−γ ,Ω)
≤ C(Ω)h

4
3‖εh‖L2(Ω)‖f‖L2(|x|−γ ,Ω).

In conclusion the reader can notice that even if we exploit the full regularity of the solution
u0, in Muckenhoupt weighted Sobolev spaces, it is not possible to retrieve by a duality trick
the desired estimate, i.e. |a0(εh, I1Nw − w)| ≤ Ch

5
3‖εh‖L2(Ω). We make the reader aware of the

fact that in order to prove estimate (3.16), we used the natural embedding,

W1,2(|x|γ, Ω) ↪→W1,2(Ω),

‖·‖W1,2(Ω) ≤ ‖·‖W1,2(|x|γ ,Ω).

A careful reader might notice that if in (3.15) we can not use the Holder inequality with Holder
exponents p, q di�erent from 2, because to verify the hypothesis of Corollary we need p ∈ (1, q]
and q ∈ (1, p].

4 Petrov-Galerkin method

It turns out that the idea of studying the bilinear form a0(·, ·) as mapping from two di�erent
Muckenhoupt weighted Sobolev spaces to R, i.e.
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a0 :W1,2(|x|γ, Ω)×W1,2(|x|−γ, Ω)→ R

is the correct way to obtain error estimates with respect to the L2(|x|
2
3 , Ω) norm and

W1,2(|x|
2
3 , Ω) norm. In fact the objective of this section is to present an a priori analysis

with respect to theW1,2(|x|
2
3 , Ω) norm, following similar ideas to the one presented in [34] and

[8]. The key tool of this section will be the Brezzi-Necas-Babuska theorem and a decomposition
lemma for L2(|x|γ, Ω),

Theorem 4.1 (Brezzi-Necas-Babuska). Let X and Y be two Hilbert spaces, a : X×Y → R
a bilinear form and consider the variational problem, �nd u ∈ X such that

a(u, v) =
(
f, v)Y ∀v ∈ Y,

where f ∈ Y ∗. The above variational problem is well-posed if and only if,

1. ∀v ∈ Y if a(u, v) = 0 ∀u ∈ X then v ≡ 0,
2. there exists α > 0 such that

inf
u∈X

sup
v∈Y

a(u, v)

‖u‖X‖v‖Y
≥ α. (3.17)

Furthermore the following stability estimate |u|X ≤
1
α
‖f‖Y ∗ holds.

Proof. I redirect the reader interested in the proof of this result to [46], Chapter 2. ut

Remark 4.2. Condition 1. in the previous theorem can be swapped with,

inf
v∈Y

sup
u∈X

a(u, v)

‖u‖X‖v‖Y
≥ α. (3.18)

In fact, we �x v ∈ Y and observe that above inf-sup condition tells us that there exits one
u∗ ∈ X such that a(u, v) ≥ α‖u‖X‖v‖Y and therefore a(u, v) = 0 ∀u ∈ X implies also
a(u∗, v) = 0, i.e.

0 ≥ a(u∗, v) ≥ α‖u∗‖X‖v‖Y ⇒ v ≡ 0.

Lemma 4.3. If γ ∈ (−2, 2) then the following decomposition for the space L2(|x|γ, Ω) holds,

[
L2(|x|γ, Ω)

]d
=
(
∇W1,2

0 (|x|γ, Ω)
)⊕(

∇W1,2
0 (|x|−γ, Ω)

)⊥
.

Proof. This result is a consequence of the fact that for γ ∈ (−2, 2) both |x|−γ and |x|γ are
Muckenhoupt weights and therefore all the Muckenhoupt weighted spaces mentioned in this
Lemma are Hilbert. In fact the key argument to prove this result is the well posedness of the
mixed problem,

Given q ∈
[
L2(|x|γ, Ω)

]n
, f ind (σ, z) ∈ L2(|x|γ, Ω)×W1,2

0 (|x|γ, Ω) s.t.(σ, τ)L2(Ω) + (∇z, τ)L2(Ω) = (q, τ)L2(Ω)

(∇w, σ)L2(Ω) = 0
, (3.19)
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which can be proven using the Banach-Brezzi-Babuska Theorem. I redirect the reader interested
in a detailed proof of this result to [34], while more information on the BBB Theorem can be
found in [14]. ut

Corollary 4.4. Given a data f ∈ L2(|x|−γ, Ω) the following variational problem,

find u0 ∈ W1,2
0 (|x|γ, Ω) such that a0(u0, v) = (f, v)L2(Ω) for all v ∈ W1,2

0 (|x|−γ, Ω),

is well-posed and we have the following stability estimate,

‖u‖W1,2(|x|γ ,Ω) ≤ C‖f‖L2(|x|−γ ,Ω).

Proof. Let v ∈ W1,2
0 (|x|−γ, Ω) and consider q = |x|γ∇v which by construction belongs to

L2(|x|γ, Ω). Using Lemma 4.3 we can �nd σv ∈ L2(|x|γ, Ω) and zv ∈ W1,2(|x|γ, Ω) such that,

(∇zv,∇v)L2(Ω) = (q,∇v)L2(Ω) − (σv,∇v)L2(Ω) = (q,∇v)L2(Ω) = ‖v‖2W1,2(|x|−γ ,Ω).

The above equality together with the fact that ‖zv‖W1,2(|x|γ ,Ω) ≤ C‖q‖L2(|x|γ ,Ω) = ‖v‖W1,2(|x|−γ ,Ω),
yields:

(∇zv,∇v)Ω
‖zv‖W1,2(|x|γ ,Ω)

≥ (∇zv,∇v)Ω
C‖v‖W1,2(|x|−γ ,Ω)

=
‖v‖W1,2(|x|−γ ,Ω)

C
.

Therefore (3.17) is veri�ed and by a similar argument also (3.18) is veri�ed. We conclude
applying Theorem 4.1. ut

Remark 4.5. Now given T ∈ T we de�ne the quantity, rT = max
x∈T

d(x,0), we will need the fact

that the discrete norm
∥∥vh∥∥

h,γ
de�ned as,

∥∥vh∥∥2
h,γ

=
∑

T∈T r
γ
T

∥∥vh∥∥2L2(T ) is equivalent to the

continuous one, i.e.

c
∥∥vh∥∥2

h,γ
≤
∥∥vh∥∥2L2(|x|γ ,Ω)

≤ C
∥∥vh∥∥2

h,γ
. (3.20)

I will only consider the case γ ≥ 0 because the case γ < 0 can be proved analogously. I �x the
notation ST0 to denote the diamond of simplexes that have 0 as vertex. First I observe that
one of the inequalities in (3.20) comes for free while the other one has a more involved proof.
In particular we observe that there exist C1(σ), C2(σ) > 0 such that for all T ∈ T \ST0 ,

C1(σT )|x|γ ≤ rT ≤ C2(σT )|x|γ ∀x ∈ T.

Therefore for the simplexes T in T \ST0 we have have a bound of the form,

C(σT )rT
∥∥uh0∥∥2L2(T ) ≤ ∥∥∥|x| γ2 uh0∥∥∥2L2(T ).

We aim at proving a similar bound also for T ⊂ ST0 and we will do so by using a scaling
argument. Let T̂ be the usual reference element, FT : T̂ → T the usual a�ne mapping from T̂
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to T , ûh = uh0 ◦ FT and x̂0 = F−1T (0), then by the shape regularity assumption we know there
exists a C3 > 0 such that |FT x̂|γ ≥ C3(σT )hT |x̂| and therefore,

∥∥∥|x| γ2 uh0∥∥∥2L2(T ) =

∫
|x|γ

∣∣uh0∣∣2 dx =
|T |∣∣∣T̂ ∣∣∣

∫
T̂

|FT x̂||ûh|2 dx̂ ≥ C3(σT )hγT
|T |∣∣∣T̂ ∣∣∣

∫
T̂

|x̂||ûh|2 x̂. (3.21)

We introduce ∆ > 0 and introduce the sub reference element,

T̂∆ =
{
x ∈ T̂ : d(x,0) > ∆

}
,

and we notice that for ∆ su�ciently small we have,∫
T̂

|x̂|û2h x̂ ≥ ∆γ‖ûh‖2L2(T̂∆),
∣∣∣T̂∆∣∣∣ ≥ (1−O(∆2)

)∣∣∣T̂ ∣∣∣, ‖ûh‖2L2(T̂∆) ≤ C(∆)‖ûh‖2L2(T̂ ).

Combining these together with (3.21) we get, the following,

∥∥∥|x| γ2 uh0∥∥∥2L2(T ) ≥ C3(σT )hγT
|T |∣∣∣T̂ ∣∣∣

∫
T̂

|x̂|û2h x̂ ≥ C3(σT )∆γhγT
|T |∣∣∣T̂ ∣∣∣‖ûh‖2L2(T̂∆) ≥ C(σT , ∆)rγT‖ûh‖

2
L2(T ).

The key idea here is that since ∆ was chosen in the reference domain it is independent from
hT and it doesn't need to go to zero as hT goes to zero.

Since we have the norm equivalence (3.20) we will resort to a discrete version of Lemma 4.3,
in order to prove the well posedness of the discrete variational problem (3.4).

Lemma 4.6. Consider γ ∈ (−2, 2) and the discrete functional space,

M0 =
{
qh ∈

[
L2(Ω)

]d
: q

h

∣∣
T

∈ P0(T ) ∀T ∈ T
}
.

Then the following decomposition holds,

M0 =
(
∇
◦
V
)⊕(

∇
◦
V
)⊥
.

Proof. Once again I redirect the reader interested in the proof of this result to [34], but essen-
tially the argument there presented is the well posedness of the discrete version of (3.19). ut
Theorem 4.7. The discrete variational problem (3.4) is well posed and we have the following
error estimate, ∥∥u0 − uh0∥∥W1,2(|xγ |,Ω)

≤ C inf
vh∈

◦
V

∥∥u0 − vh∥∥W1,2(|x|γ ,Ω)
(3.22)

Proof. We consider vh ∈
◦
V and de�ne the function q

h

∣∣
T

= (rT )−γ∇v
h

∣∣
T

for all T ∈ T . Using

the previous lemma we can �nd (σh, zh) ∈M0 ×
◦
V such that,
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‖∇zh‖h,γ ≤ 2‖qh‖h,γ = 2‖∇v‖h,γ,(
∇zh,∇vh

)
L2(Ω)

=
(
qh,∇vh

)
L2(Ω)

−
(
σh,∇vh

)
L2(Ω)

=
(
∇zh,∇vh

)
L2(Ω)

=
(
qh,∇vh

)
L2(Ω)

=
∥∥∇vh∥∥2

h,−γ.

Therefore for all vh ∈
◦
V we have that, sup

wh∈
◦
V

(
∇wh,∇vh

)
L2(Ω)

‖wh‖
W1,2(|x|γ,Ω)

≥

(
∇zh,∇vh

)
L2(Ω)

‖zh‖
W1,2(|x|γ,Ω)

(3.20)

≥

C
∥∥∇vh∥∥

h,−γ. The other inf-sup condition can be proven in an analogous manner and therefore

the problem is well posed. We prove (3.22), observing that for all (uh0 − vh) ∈ W1,2(|x|γ, Ω)

C
∥∥uh0 − vh∥∥W1,2(|x|γ ,Ω)

≤ sup

wh∈
◦
V

a0(u
h
0 − vh, wh)

‖wh‖
W1,2(|x|−γ,Ω)

= sup

wh∈
◦
V

a0(u− vh, wh)
‖wh‖

W1,2(|x|−γ,Ω)

,

where to obtain the last equality we used the Galerkin orthogonality, i.e. a(u−uh0 , wh) = 0. We
notice that the bilinear form a0(·, ·) is continuous by Hölder inequality and therefore we have,

C
∥∥uh0 − vh∥∥W1,2(|x|γ ,Ω)

≤ sup

wh∈
◦
V

a0(u− vh, wh)
‖wh‖

W1,2(|x|−γ,Ω)

≤
∥∥u− vh∥∥

W1,2(|x|γ,Ω)

.

Now using the triangular inequality we have,

∥∥u− vh∥∥W1,2(|x|γ ,Ω)
≤
∥∥u0 − vh∥∥W1,2(|x|γ ,Ω)

+
∥∥vh − uh0∥∥W1,2(|x|γ ,Ω)

≤

(
1 +

1

C

)∥∥u− vh∥∥W1,2(|x|γ ,Ω)
,

since the above inequality holds for all v ∈
◦
V we can take the inf and conclude. ut

Corollary 4.8. The following error bound holds for the solution of the discrete variational
problem (3.4), ∥∥u0 − uh0∥∥W1,2(|x|

2
3 ,Ω)
≤ Ch‖f‖L2(Ω). (3.23)

Proof. We simply apply (3.22) together with the fact that from the previous chapter we know
that, ∥∥u0 − I1Nu0∥∥W1,2(|x|

2
3 ,Ω)
≤ Ch‖u0‖W2,2(|x|

2
3 ,Ω)
≤ Ch‖f‖

L2(|x|
2
3 ,Ω)
≤ Ch‖f‖L2(Ω).

ut

We can observe that the numerical experiment presented in Figure 4.4 con�rms the numer-
ical estimates presented above. The most natural question the reader might ask now is if we
can prove an error estimate similar to (3.23) also for the penalty �nite elements method. In
order to achieve this result we need to prove the weighted counterpart of Lemma 2.2. To do
this we notice that even if in a Petrov-Galerkin setting we don't have an energy minimization
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prospective we can retrieve this point of view in the discrete setting. In particular the key idea
is that uhε not only minimizes Jε(v) in V . In fact we observe that when we proved (3.20) we
also showed that the scalar product (·, ·)h,γ is equivalent to the scalar product (·, ·)W1,p(|x|γ ,Ω)

and therefore the solution of the variational problem,(
∇uhε ,∇vh

)
h,γ

+ h−σ(uhε , v
h)∂Ω,h,γ = (f, vh)h,γ . (3.24)

minimizes the following energy functional with in V ,

Jε,γ(v
h) = −1

2

(
∇vh,∇vh

)
L2(|x|γ ,Ω)

+ h−σ(vh, vh)L2(|x|γ ,∂Ω) − (f, vh)L2(|x|γ ,Ω) , (3.25)

provided that we are working in the Hilbert spaces setting which is a consequence of asking
W1,2(|x|γ, Ω) to be Muckenhoupt weighted Sobolev space, i.e. γ ∈ (−2, 2). If we consider (3.6)

and instead of v we consider a corresponding
∼
v ∈ P1(T ) de�ned as,

∼
v∣∣

T

= v∣∣
T

rT , then we have

that uhε veri�es also (3.24). Since we know that uhε minimizes the energy functional (3.25) we
have the following inequality,

(
∇uhε ,∇uhε

)
L2(|x|γ ,Ω)

+ h−σ(uhε , u
h
ε )L2(|x|γ ,Ω) − 2(f, uhε )L2(|x|γ ,Ω)

≤
(
∇vh,∇vh

)
L2(|x|γ ,Ω)

+ h−σ(vh, vh)L2(|x|γ ,Ω) − 2(f, vh)L2(|x|γ ,Ω).

Furthermore we notice that for any function v ∈ W1,2(|x|−γ, Ω) we can consider x 7→ v|x|γ ∈
W1,2(Ω) and use (1.16) to obtain,(

∇u0,∇v
)
L2(|x|γ ,Ω)

+ h−σ(u0, v)L2(|x|γ ,Ω) = (f, v)L2(|x|γ ,Ω).

Combing the last two equations we obtain a weighted version of (3.10),

∣∣u0 − uhε ∣∣2W1,2(|x|γ ,Ω)
+ h−σ

∫
∂Ω

(
∂u0
∂n

hσ + uhε

)2

|x|γ ds

≤
∣∣u0 − I1Nu0∣∣2W1,2(|x|γ ,Ω)

+ h−σ
∫
∂Ω

(
∂u0
∂n

hσ + I1Nu0

)2

|x|γ ds. (3.26)

Theorem 4.9. Let u0 be the solution to (1.16), uhε be the solution to (3.6), then the following
a priori error estimate holds,∥∥u0 − uhε∥∥W1,2(|x|

2
3 ,Ω)
≤ Chµ‖f‖L2(Ω)

where µ = min
{

1, σ
2

}
.

Proof. The proof of this result is a repetition of the steps described in Theorem 2.3 using (3.26),
together with the interpolation estimates developed in the previous Chapter and the fact that
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W1,2(|x|
2
3 , Ω) is a Muckenhoupt weighted Sobolev space and therefore we can use the usual

trace inequality. Last one needs to apply the same observation made in Remark 2.5. ut



Conclusions

I would like now to draw the main conclusion of my thesis regarding the penalty �nite ele-
ment methods applied to non smooth domains. First I proved an a priori error estimate using
techniques developed for singular data in [85] and a duality trick proposed in [7]. Those es-
timates establish the non inferiority of penalty �nite element methods compared to classical
conforming �nite elements with respects to the error in W1,2(Ω) and L2(Ω), provided that the
correct penalisation term is chosen. Those results are contained in Theorems 2.3, 2.6 and in
Remarks 2.5 and 2.7. I then numerically observed that if we choose the penalisation term in a
speci�c manner then the penalty �nite element method converges optimally with respect to the
L2(Ω) norm, see Figure 4.3. I've also showed the known result that conforming �nite element
methods cannot achieve optimal rate of converge. When we mention an appropriate choice of
penalisation term we mean ε = h5/3 as numerically showed in Figure 4.2 and Figure 4.3.
I later addressed the question, �Is it possible to prove by a duality trick that the penalty �nite
element converges optimally with respect to the L2(Ω) norm ?�. In particular I found a negative
answer in both the classical and weighted regularity setting. Now a very legitimate point that
the reader can make is why do we care if it is possible to prove the above result by a duality
argument. The answer to this question lies in the fact that the standard Babuska-Osborn the-
ory for the approximation of eigenvalue problems yields an a priori error estimate by using a
duality trick. Furthermore from Figure 4.6 we notice that the eigenvalues approximation using
penalty �nite elements converges with order 2 which is even better than the super-convergence
we observed for the source problem in L2(Ω). More details on this topic can be found in [13].
Last, I proved that both the conforming �nite element method and the penalty �nite element
method, with the correct penalisation term, converge with optimal error rate in the norm as-
sociated with the natural choice of Muckenhoupt weighted Sobolev space used to study the
regularity in domains presenting point singularity. I redirect the reader interested in an argu-
ment regarding why this result is morally relevant to [63].
Further work will involve more detailed investigations of the super-convergence with respect
to the L2(Ω) norm, presented in Figure 4.3. In particular it would be interesting to recast the
penalty �nite element method in the framework of energy corrected �nite elements presented
in [44], for which a second order convergence in L2 can be proven. Moreover as previously
discussed, Figure 4.6 motivates us to look into a weighted Babuska-Osborn theory, this will be
a delicate task since from Figure 4.5 we know that the source problem converges with order 1
in the weightedW1,2(Ω) norm even if the same behaviour is also presented by conforming �nite
elements for which the approximation of the eigenvalues does not super-converge. Last it would
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be interesting to investigate what happens in the mixed Laplacian problem if we imposed the
homogeneous Neumann boundary conditions using a penalisation method.



4

Appendix � Numerical Experiments

All the numerical experiments that are presented in this thesis were realised using the �nite
element library NGSolve [84],[83]. Furthermore all the code to reproduce the numerical ex-
periments here presented can be found in the repository dedicated to my master thesis. The
eigenvalues computation were performed using the SLEPc library [64]. I'd like to thank Stefano
Zampini for teaching me about the PETSc library and how to use PETSc4py and SLEPc4py.

Fig. 4.1: The �gure shows how the error of the conforming �nite element method, described in
chapter 3, decays when it is measured with respect to the W1,2(Ω) and L2(Ω) norms.
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Fig. 4.2: The �gure shows how the error of the penalty �nite element method, described in
Chapter 3, decays when measured with respect to the W1,2(Ω) and L2(Ω) norms varying σ.

Fig. 4.3: The �gure shows how the error of the penalty �nite element method, described in
Chapter 3, decays when it is measured with respect to the L2(Ω) norm for σ = 1.2, 1.7, 1.8 and
2.0.
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Fig. 4.4: The �gure shows how the error of the conforming �nite element method, described

in Chapter 3, decays when it is measured with respect to the W1,2(|x|
2
3 , Ω) and L2(|x|

2
3 , Ω)

norms.

Fig. 4.5: The �gure shows how the error of the penalty �nite element method, described in

Chapter 3, decays when it is measured with respect to theW1,2(|x|
2
3 , Ω) and L2(|x|

2
3 , Ω) norms.
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Fig. 4.6: The �gure show the convergence of the eigenvalue corresponding to the �rst moment of
the Poisson equation (on the domain depicted in Figure 1.2), for the conforming �nite element
method and the penalty �nite element method.
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