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Introduction

Partial differential equations on domains presenting point singularities have always been of
interest for applied mathematicians; this interest stems from the difficulty to prove regularity
results for non-smooth domains, which have important consequences in the numerical solution
of partial differential equations. In my thesis I address those consequences on a particular
family of numerical schemes, known as penalty finite element methods. In particular the aim
of my thesis is not only to introduce the penalty finite element methods and their a priori error
analysis but also to provide a priori error estimates that show that under suitable conditions
penalty finite element methods are not inferior to conforming finite element methods. T am
also going to show numerical evidence that the penalty finite element methods outperform
conforming finite elements method in domains presenting a corner singularity provided that
we choose the correct penalisation factor. I would like to keep my introduction short and
just provide the reader with an account of the contents of the various chapters in order to
allow for an “on-demand” reading. In the first chapter of my thesis T address the continuos
problem on singular domains, in particular I limited my self to the Poisson equation. In the
first section I address the connection between the Poisson equation with different boundary
conditions and energy minimization principles, in particular I describe R. Courant’s point of
view which will serve as a moral foundation for the penalty finite element method. In the next
section T introduce the notion of Sobolev spaces and various existence and uniqueness results
in the Sobolev space context; furthermore I will shown different flavours of proof for these
results and address some facts that might concern a reader more familiar with well known
results in functional analysis. In the last section I introduce the reader to classical results in
regularity theory of elliptic partial differential equations and to the seminal work by P. Grisvard
on elliptic regularity in non smooth domains. I conclude with detailed computations regarding
a specific Pacman like domain, that will accompany the reader throughout the entirety of
my thesis in order to make the idea presented clearer. In the second chapter of my thesis I
will introduce the reader to the notion of Muckenhoupt weighted Sobolev spaces, I will then
recast the seminal work by V. Kondratiev and V. G. Maz’ya in the framework of Muckenhoupt
weighted Sobolev spaces and take advantage of this connection in order to show the existence
of a variety of Poincaré type inequalities for Maz’ya-Sobolev spaces with different metrics.
Last I will present an interpolant developed by R. Nochetto and I will limit myself to the case
of piece-wise linear polynomials. I will later on make use of the connection between Maz’ya-
Sobolev and Muckenhoupt weighted Sobolev spaces to discuss the approximation of functions
in Maz’ya-Sobolev spaces by piece-wise linear polynomials. In the last chapter I will begin
giving an overview of different finite element methods that can be used to overcome the lack in
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regularity cased by the non smoothness of the domain we are working with. Next I will discuss
in more detail the a priori error estimates for conforming finite element methods in the context
of domains presenting point singularities. I will later introduce the reader to penalty finite
element methods and apply techniques that have been used in the context of smooth domains
but with singular data in order to show a priori error estimates for penalty finite element in
point singular domains. Finally, I'm going to redirect the reader to some numerical results
presented in the Appendix and discuss the impossibility to prove an a priori error estimate
that explains the super convergence observed by means of a duality argument even if such
duality argument is carried out in Muckenhoupt weighted Sobolev spaces. Last I will present
to the reader a Petrov-Galerkin analysis that allows to prove a priori error estimate in the
norm associated with the Maz’ya-Sobolev spaces extending the usual results to penalty finite
element.



The Poisson Equation

Throughout my thesis I will focus my attention on a single partial differential equation (PDE),
the Poisson equation. The reasons that brought to this decision are the fact that the Poisson
equation can be considered as a representative “toy” problem within the class of elliptic partial
differential equations with constants coefficients and in my opinion the ideas that I will here
present will result clearer to the reader if only the Poisson equation is considered.

Given a domain 2 C R? and a smooth enough data f : 2 — R the Poisson equation, consists
in finding a smooth enough function u : {2 — R such that

d
—Au=-> Pu=fin Q. (1.1)

=1

Later in this chapter we will discuss in more detail the notion of “enough” smoothness and
what does this entail for the meaning of the above equality sign. To begin our study of the
Poisson equation we assume that f is a twice differentiable function with compact support,
i.e. f € C%(92), therefore it seems natural to ask for u to be at least twice differentiable, i.e.
u € C?(2). In this context it is clear what equation ([I.1)) means, u is a twice differentiable
function such that for all z in (2 the trace of the Hessian of u evaluated at x is equal to the
value of the data f at the point x. The first question that comes to mind when dealing with
any kind of equation, is what are the necessary and sufficient conditions in order for a solution
to exists and be unique 7 In other words is the problem of finding a solution for equation ([1.1})
well posed ? Indeed if we assume that 2 = R? then equation ((L.1)) is well posed.

Theorem 0.1. Let f € C*(R?), then (1.1) has an unique solution u : R — R, furthermore
u € C*(RY).

Proof. Providing the reader with a full proof of this result would be out of the scope of my
thesis but a fully detailed proof can be found in [47], Chapter 2. O

We will now drop the assumption that (2 is the full R? favouring a less restrictive hypothesis,
i.e. 2 C RY open, bounded and with smooth boundary. If we consider equation (1.1)) without
any additional hypotheses we can easily find counterexamples to the fact that the Poisson
equation is well posed. For instance since constants belong to the kernel of the Laplacian
operator, if u is a solution of then any function of the form

! We follow [47] convention to use the minus sign in front of the Laplacian operator.
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v:2—R

r—u(zx)+C

with C' € R is still a solution of (1.1]). In order to obtain a well posed equation we study the
system of equations, that is known as the Dirichlet problem for the Poisson equation, i.e.

—Au=f in ),
(1.2)
uUu=gq on 0f).

Once the Dirichlet problem has been introduced it is possible to prove that under similar
assumptions as in Theorem (0.1} problem (|1.2]) is well posed.

Theorem 0.2. Let 2 C R™ be open, bounded, with smooth boundary, f € C*(£2) bounded and
g € C°(092), then (1.2) has a unique solution u : 2 — R, furthermore u € C?(2).

Proof. The reader interested in the proof of this result can find it in [54], Chapter 4. O

Remark 0.3. The reader might be tempted to relax furthermore the hypothesis imposed on
the data, and this attempt might be successful, in particular we can ask for the data to be
bounded and locally Hélder continuous and still retrieve C? solution, the proof of such a result
can be found in [54], Chapter 4. Nevertheless it will be impossible to take a C° data, a counter
example can be found in [62], Chapter 3.

1 Calculus of Variations

In this section I will elaborate on the connections between the solution of the Poisson equation
and the minimization of energy functionals. In particular I will focus on the problem of equilib-
rium and on the depiction of rigid boundary conditions as a limiting case of natural boundary
conditions. The view point presented here comes from an article by R. Courant that not only
considers problem of equilibrium but also of vibration, [31]. References for a reader interested
in a more detailed account of the ideas presented in this section are [47] and [54]. Let us begin
by considering the homogeneous Dirichlet problem, i.e.

—Au=0 in (),
(1.3)
u=>0 on 0f).

In the previous section I redirected the reader interested in a proof of Theorem to [54], but
now I would like to elaborate on a particular proof for the uniqueness of the solution of the
above equation, known as the energy method. Let’s assume that u;, uy are two solutions of
, then by linearity we know that also the difference between the two solutions is a solution
of (L.3), in particular if we define 6 := u; — uy then ¢ is a solution of (L.3):
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—Ad=01n 12,
6 =0 on 0f2.

If one multiplies the first equation above by %(5 and integrates by parts, the resulting equations
will give us uniqueness,

_1/5&5 dle/ \V6|2 dx = 0. (1.4)
2 0 2 (0]

In fact we know from Theorem that Vo : {2 — R is a continuous function and therefore
(1.4]) give us Vo = 0. Last if we combine the fact that ¢ has null gradient with the fact that
d is null along the boundary we get 6 = 0, which means our two solutions wu;, uy of are
identical everywhere. As previously mentioned this method to prove uniqueness is known as
the energy method, because the quantity obtained in (1.4) is known as the Dirichlet energy
of § : 2 — R, and will be here called (9),

I:CHNQ) — R,

1
ur—>—/ |Vul*dx.
2/

In the remaining part of this section I will elaborate on some of the properties of the Dirichlet
energy functional I and related energy functionals. In particular I will begin exploring the
connections between the minimization of the Dirichlet energy functional and the solution of

3.

Theorem 1.1. The solution of (1.3) is the minimizers of the Dirichlet energy functional in
C2(£2). Moreover the solution of (1.2) is the minimizer of the generalised Dirichlet energy
functional, i.e.

B p) =5 19 dx= [ feax (15)

in CZ4(02), provided enough smoothness is assumed on f : 2 — R, in particular we will here
work under the assumption that f € C'(02).

Proof. Let us consider a generic v € C}(£2), multiply the first equation in (1.3) by (v —u) and
integrate by parts to obtain the following expression:

—/(@—u)AudX:—/vAu—uAudX:/VUVudX—/|Vu]2 dx =0,
Q Q Q

1 1
—/ Vol dx+—/ |Vu|? dx—/ Vul” dx > 0,
2 9] 2 2 (9}

1 1
E/Q|VU\2 dx > 5/9|Vu|2 dx, (1.6)

where Yang’s inequality has been used to pass from the first to the second equation. Now since
we can obtain an expression as (1.6)) for any v € C}(£2) then we have proven that the solution
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of the homogeneous Dirichlet problem is also a minimizer of the Dirichlet energy functional. If
we start from equation (|1.2]) rather then ((1.3)) and we proceed as above, we obtain the following:

—/(v—u)Audx——/vAu—uAudx—/VvVudX—/\Vu\de—/(v—u)fdx,
0 0 o 0

1 2 1 2 2

—/ Vvl dx+—/ |Vul dx—/ |Vul dXZ/(v—u)f dx,

2Ja 2Ja 7 0

1 1
—/ Vol dx—/fv dxz—/ |Vu|? dx—/fu dx,
2Ja 0 2Jo 0

Theorem 1.2. The critical points of the generalised Dirichlet energy functional in C?(§2) are

solutions of (1.2)).

Proof. Let u be the minimizer of (1.5) and v € C2°(£2) then we introduce the following auxiliary
function:

O

1 R—R

Tr—>J0(u+7'v,f):%/Q|V(u+7—v)|2 dx—/ﬂf(u—FTv) dx

We notice that since u is the minimizer of (1.5 then it is also a critical point for 7 and therefore
i'(0) = 0. Computing explicitly the derivative of i'(7) we get,

z”(T):%/QQ(Vu-Vv)dx—/va dx,

therefore from ¢/(0) = 0 and integrating by parts we get,

/Qvuw dx—/gfv dx:—/QAuv dx—/nfv dx:/g(—Au—f)vdx:O. (1.7)

We conclude applying the fundamental lemma of calculus of variations and observing that the
boundary conditions are verified because we searched for the minimizers u in C?({2). O

I would like to draw the reader attention to the fact that in Theorem [L.2] we found that
(1.2) are precisely the Euler-Lagrange equations associated with the Lagrangian,

L:NxRxR* >R

(x,u, Vu) — |Vul’.

In fact in the proof of Theorem we showed that the critical points of the Hamiltonian action
for the above Lagrangian are the solution of , since in this case the Hamiltonian action
is precisely . Computing the second derivative of the Lagrangian the reader can easily
find out that the Hamiltonian action is a convex functional, in fact substituting p = Du and
q = Dv we have
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RL(Pp)=2>0,
L(Op+ (1—-0)q) <L(p)+ (1—60)L(q),

/ 0V + (1 — )V dx < 9/ Vul? dx + 1;9/ Vol dx,

o <0u T (1- (9)11) < 0Jo(u) + (1 — 6)Jo(v). (1.8)

Since the Dirichlet energy is convex the solution to the Euler-Lagrange equations does not only
correspond the critical point of the Hamiltonian action but it is the minimizer of the Dirichlet
energy. The minimization result just proven fits nicely with the principle of minimum energy
and with this principle in mind T would like to introduce a different energy functional,

_1 2 . . — ‘2
Jg(-,f)—§/0|v-| dx /Qf dx + = 1/m|| ds. (1.9)

In fact the rational behind this energy functional is instead of imposing some boundary con-
dition in the minimizing class to impose a penalisation term on the boundary. We can easily
check that the above energy functional is convex, in fact following the same reasoning as before
with p = v and ¢ = v we obtain,

g -
/ Bu + (1 — 0)0f? dx < -/ uf dx+ =0 [ o ax,
052 2 o082 2 o052

combining this last inequality with (1.8 we get that J.(-) is convex,
7. (0u +(1— 9)1}) < 0J.(u) + (1 - 0)J.(v).

and therefore once again finding the critical points of the above Hamiltonian action corresponds
to an energy minimization problem. Now given the connection we have seen before between
and , it comes natural to wonder if there is a one to one correspondence between
the minimizers of and the solution of a PDE. To answer this question we introduce the
following theorem.

Theorem 1.3. Given an u € C%(£2), 2 C R? open set with a Lipschitz boundary the solution
of the partial differential equation

—Au=fin,
Opu = —2e  u on 8(2 (1.10)

is the minimizer of (1.9), in C*(02). Viceversa the minimizers of (1.10)) in C?*(£2) are solutions
of (LT0).
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Proof. Let us consider v € C%(£2), then we multiply the first equation of (1.10) by (v —u) and

integrate by parts,
—/(v—u)Audx:/f(U—u) dx
Q Q

/Vqudx—/ U@nuds—/VuVudx—i—/ u@nuds:/fv—/fu
Q 0 Q 0 Q 0

now using the second equation in (1.10) and Yang’s inequality we get,

/VUVU dX+26_1/ uv ds—/VuVu dX—|—26_1/ |u|® ds-/fv—/fu,
20 20 0
/VvVvdx+ /VuVudx+5 1/ |u |2ds+5_1/ |v]? ds—/VuVudx
7
251/ ds>/fv—/fu
o0

1
—/|Vv|zdx+5_1/ |v)? ds—/fvdx> /|Vu| dx + e~ 1/ |u|2d8—/fudx.
2J)a 290 0 2 290 0

In order to prove the second part of this theorem we need to take a slightly more complicated
route then the one shown in Theorem We begin as usual fixing v € C*°(§2) and introducing
the auxiliary functional,

j:R—=R,
T+ Jo(u+ 1),

1
T = —/ Vu + tVo|? dx—/ fu+tfo dx—i—al/ lu+ tv]” dx.
2 Ja 0 00
Since we assumed that v is a minimizer of (1.9) we know that j'(0) = 0, i.e.
= / VuVu dx +/ Vul” dx — / fvdx+ 5_1/ 2tv? ds + 5_1/ 2vu ds
2 Q o Gle; Gle;
7'(0) = / VuVu dx — / fvdx + 25_1/ vuds=0  Yve C®(). (1.11)
0 7 00
Now we fix any w C {2 and consider v € C°(w), then the above expression becomes,
/Vqu dx — / fodx  Yve C®w),
integrating by parts we arrive at,

2 T would like to warn the reader interested in the original view point by R. Courant, presented in [31], that given the
fact we adopted the convection to consider the negative Laplacian, as in [47], also the boundary conditions have the
been considered with a negative sign.
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—/vAu dx — / fodx  Yve C%®w).
w w

From the previous expression varying arbitrarily w C {2 and using the fundamental lemma of
calculus of variations we get that the minimizer of (1.9)) solves —Au = f in §2. Therefore we are
left to deal with the boundary part of our energy functional which after integrating by parts

(1.11) becomes,

/ vOu ds + 25_1/ vu ds = / <8nu + 25_1u>v =0 Yve ™). (1.12)
o0 00 Gle;

In order to address this problem we extend the domain {2 to a larger domain (25 and consider
an open set w C (25 that envelops a smooth portion of the boundary, Figure [I.1, We will now

Fig. 1.1: The below figure depicts the idea behind the tubular neighbourhood variation in R2.

consider an extension us of v on (25 which is identical to u,,, on w and observe that from
(1.12)) it follows that,

/ vO,us ds + 251/ vugs ds = / (anu(; + 25’1u5>v =0 Vv € O (w).
o0 0 9

The above expression allows us to use once again the fundamental lemma of calculus of variation

in order to obtain O,us = —2¢ 'us on w and therefore on 0,u = —2¢ 'u on 02 Nw. Last we
observe that since the singularity has measure zero with respect to the boundary, then varying
w arbitrarily along the boundary yields d,u = —2~!u on 012. O

Remark 1.4.1 would like to warn the readers to proceed with caution when dealing with the
above proof, in fact there are many technicals detail hidden for clarity. One among all is the
construction of the extension s, which might seem simple on a convex polygonal domain in R?
but gets more delicate when dealing with a Liptshiz boundary in R2. Discussing this in more
detail would go outside of the scope of my thesis, but I would like to mention that when dealing
with domains that have piecewise smooth boundary if u enjoys a radial symmetry with respect
to the singularity point along the boundary then wus can still be constructed quite easily. In
particular we will deal later on with domain and u as the one previously described. A more
general result on the construction of us is the tubular neighbourhood Theorem; more detail
can be found in [36], Chapter 2.

We now have two different PDEs, (1.10) which represent a natural constrain and (1.3)) which
represents a rigid constraint. Furthermore the energy corresponding with (1.3), i.e. (1.5]), is the
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limit as ¢ approaches zero of the energy corresponding to (L.10)), i.e. (1.9). In particular this
suggests that we can view the rigid constraint as the limit of natural constraint, as the restoring
force of the constraint approaches infinity. This corresponds to the physical idea behind a rigid
constraint. A careful reader at this point might be bothered, and with reasons, by the vague
concept of limit that has been used in this last paragraph; let me reassure this careful reader
that after introducing the notion of weak solution for the two problems, we will show that the
solution ug to problem is the limit of u,, the solution of , as ¢ — 0, with respect to
a certain norm.

Remark 1.5. An even more careful reader might feel deceived that while at the beginning of
this paragraph we try to convey the idea of convergence of energy functionals, we then plan
to formalize this notion by the converge of the energy minimizers rather then in terms of the
functionals itself. I will address this observations in a later section towards the end of this
chapter.

2 Sobolev Spaces and Weak Formulation

Until this section we have always considered the Dirichlet problem with smooth data, in partic-
ular we started assuming f € C%(£2) in Theorem |0.1|and relaxed this assumption to f € C''(£2)
in Theorem Nevertheless, as already discussed in Remark it is not possible to decrease
the regularity further, for example f € C°(£2), and still have u € C?(§2). As usually done in
mathematics if the hypothesis of a Theorem are too stringent for the thesis the only thing left
to do is to relax the thesis. In particular in this section we will give a weaker concept of solution
for (1.2)) which will yield a less regular solution, therefore allowing for a less smooth data. We
first observe that if u ¢ C?(£2) then we can not give sense to the classical definition of the
Laplacian, therefore we need to generalize somehow the notion of second derivative, in order
to do so I will first introduce the concept of distribution and then the one of distributional
derivative. I reassure the reader that the notion of weak solution and of classical solution will
be reconciled in a final remark once all the notion needed to do so will be introduced.

Definition 2.1. Let 2 C R? be an open set then a distribution is a linear map, T : C=°(2) —
R such that for any {n}nen converging to ¢ € CX(82) then lim Ty, = Typ. We denote the
n—oo

space of all distribution defined on the domain {2 as D'(12).

1

loc(£2), there is a canon-

Remark 2.2. In particular given a locally integrable function, i.e. f € L
ical correspondence between L] (£2) and D'(§2), i.e.

loc

L. — D'(2)

loc

fi—>Tf

where the operator T} is defined by its action, < T, ¢ >:= / fo dx. The same identification
Q
will hold also for functions in £P(2), since LP(2) C L, .(£2), for all p € [1, 00].

loc
Definition 2.3. Given a distribution it is always possible to define a distributional deriva-

tive, in particular given T € D'(£2) then D;T € D'(§2) is called the partial distributional
derivative in the x; direction if <'T,0,,p0 >= — < DT, > for all p € C(12).
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For the reader interested in developing a deeper insight in the theory of distributions I
suggest [49], [82] and [90]. Now that we have a weak enough concept of derivative T would
like to do some symbolic calculation in order to see what would be a good definition of weak
solution. We begin considering v € C2°(§2), from now on called test function, then we multiply
by v and integrate by parts to obtain,

d d
_/UAudX:—/Zv@iud}(:/zamivﬁxiudx
2 2 =1 2 =1
d
Z/@xivﬁmiu dX:/Vu~Vv:/fv dx. (1.13)
i=1 79 2 2

in order to give sense to ((1.13) for solutions that are not twice differentiable we can use the
notion of distributional derivative , i.e.

d
> <Dy T, 0p0 >= / fodx,  YveCX(). (1.14)
i=1 2

At this point reader might be bothered by the miss match in regularity between the space
where the solution live and the space where we take the test functions, in fact while we take
the test functions in C°({2), it is enough that T, is a distribution whose derivative can be
represented as an £,.({2) function. In order to deal which this missmatch in regularity we
introduce a powerful concept, the idea of Sobolev spaces.

Definition 2.4. Let 2 be an open set in R and consider u € LP(12), then by virtue of Remark
we find the corresponding canonical distribution T, € D'({2),

T,:C®(2) =R

@H/ugpdx.
Q

If T, admits a partial distributional derivative D, T, in all directions, and furthermore it exist
Dzxu € LP(82) such that the following statement holds,

D,,T,: C2(02) > R

Y / D,.uypdx
Q

then we say that u lives in the Sobolev space W'P. Furthermore if for i € {1,...,d} we have
that Dy, u lives in WP then u lives in WP, this allows to define inductively the Sobolev space
WP for any s € N. In particular in the case p = 2 it is usual to denote the Sobolev space
W2 as H*(02).

The plan of action for the reminder of this section will be as follow, first I will give a brief
overview of some useful properties of Sobolev spaces, next I will introduce the notion of weak
solution for , then I will prove some useful result to show existence and uniqueness of weak
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solutions. I redirect the reader interested in getting a deeper knowledge regarding the topics
treated in the remainder of this section to [47, 82 22| [70} [7T], [72] B35].

Proposition 2.5. The Sobolev space W*P(S2) is a Banach space with respect to the following
norm,
lelyenoy = lullzniay + Y I1Datlng),

0<|e|<s

where o = (o, ..., aq) € N is a multi-index and D, is the partial distributional derivative
taken ay times in the i-th direction for all i € {1,...,d}. Furthermore if we select p = 2 the
space H*(£2) is a Hilbert space with respect to the scalar product,

(U,U)Hs(g) = (U,U)ﬁZ(_Q) + Z (DQU,DQU)£2(Q)7

0<]a|<s

which induces the above norm for p = 2. Last but not least for p € (1,00) the Sobolev space
WHP((2) is reflexive and for p € [1,00) the space W*P(§2) is separable.

Proof. 1 redirect the reader interested in the proof of this result to [22], Chapter 9. O

Proposition 2.6. Given an open set 2 C R? such that 012 is Lipschitz continuous and u €
WP the trace operator which restricts u on the boundary,

Yo : WHP(02) = W 2P(502),

is linear and continuous when p € [1,00). Furthermore the trace operator admits a continuous
right inverse for p € (1,00]. If d = 2 then the trace operator,

Yo : H™(2) = H™ 2(912),

18 linear and continuos, for all n € N.

Proof. The result here synthesised has a long history, that is deeply connected with the Uni-
versity of Pavia, therefore I would like to spend a couple of lines to go through different
instances of this result. A classical result from E. Gagliardo states that the trace operator
Yo : WHP(£2) — WL=22(912) is linear and continuous when p € [1,00), furthermore the trace
operator admits a continuous right inverse for p € (1, oo]. The original proof of this result can
be found in [50]. The problem for Sobolev space W*?((2) with s > 1 was addressed later, in
particular it was proven by J. Necas that (yp,71) : W*P(2) — WHP(982) x LP(D42) is a linear
and continuos mapping. Characterizations of the range of the above mentioned operator have
been developed in two dimension by P. Grisvard in [55], Chapter 3, and then extended to three
dimension by A. Buffa and G. Geymonat [23]. Last the result as here stated follows from the
proof presented in [52] and the argument in [41]. An account of all this results can be found in
[51] 0

Definition 2.7. Given the Sobolev space WP (§2) we define the closure of C2°(£2) within this

space as WP (12), i.e.
wer@) =cr@
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Another useful notion to introduce at this point is the one of fractional Sobolev space.

Definition 2.8 (Fractional Sobolev Space). Let u € LP({2), we define the Gagliardo-

Slobodeckij seminorm as:
u(x) —u(y)” v
([ [ R )
’ ela |x—y|

where n = dim(2) and 6 € (0,1). Now it is possible to define the fractional Sobolev space

|u

WP ((2) = {u e WElP() s.t. sup |D%l,y, < oo},
laf=]s] ’

where s,p € Rug and 0 = s — | s].

I will give for granted some basic properties of fractional Sobolev spaces such as the fact
that they are Banach spaces, furthermore when p = 2 they are Hilbert spaces if equipped with
the following norm

[ullsni@) = lllwissni) + lulg -

I redirect the reader interested in getting a deeper knowledge of fractional Sobolev spaces to
[35].

2.1 Weak Solutions

We can argue by density to obtain from (1.14) a new notion of solution, i.e. we fix v € WP(£2)
and consider a sequence {v, }neny converging to v in W'P(£2) then (1.14]) becomes,

d
nh_{gozl < D, T,,0y,v, >= lim fo, dx. (1.15)

n—oo N

Assuming that the solution of u belongs to the Sobolev space H'(£2), f € £2({2) and the test
function was taken in H'(f2) we can swap the limit with the integral in order to get from

(T.15):
d
/ Z D, uD,vdx = / fv dx.
(o Rt Q

d

More often then not we will by an abuse of notation write Vu - Vv to express Z Dy uDg,v.
i=1

Definition 2.9. Let 2 C R™ be an open set and f € L2(2) then we say u € HY(2) is a weak
solution of (1.3)) if and only if,

ao(u,v) = / Vu-Vudx = (f,v)20), Vv € Hy(0). (1.16)
Q
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It is easy to see that the above definition is well constructed in the sense that all strong
solutions, i.e. solutions of (L.3), are also weak solutions. In fact if we take v € H}(£2), multiply
by v and integrate by parts we get precisely (1.16). A well known result which will be
fundamental when dealing with the bilinear form in ((1.16]) is Poincare’s lemma.

Lemma 2.10 (Poincaré). [ Let {2 be an open bounded set, then there exists a constant Cp(S2),
greater then zero, such that for all v € H}(£2) we have the following inequalily,

HUHLQ(Q) < CP(Q)HVUH[£2(Q)]d'

Proof. Many different proofs have been developed for this result, I redirect the reader interested
in a proof obtained using functional analysis tools to [22], Chapter 9. O

Corollary 2.11. The bilinear form ao(-,-) as in Definition[2.9, is coercive in H3(£2), i.e. there
exists a > 0 such that Vv € H}(2) the following inequality holds,

allvll i) < aolv,v), Yo € Hy(92). (1.17)

It is possible to connect once again the notion of weak solution with the minimization of
the energy functional (1.5]).

Proposition 2.12. Weak solutions of (L.3), defined as in are minimizers of (L.5) in

H}(2), and viceversa.

Proof. Let us assume that u € H'(£2) and rewrite Jy(v) in terms of the bilinear form aq(-,-),

Jo(U> = %CL()(U, U) — (f, ’U)LQ(Q) :%ao(u, 'LL) — (f, 'U,)EQ(Q)

+ ao(U, v —= U) - (fv v = u)£2((2)
1
+ —ap(v — u,v — u).
2
The only thing left to do is to notice that the first line in the previous equation after the equal
sign is Jo(u), the second line is null thanks to (1.16)) and the last line is greater or equal then
zero thanks to the coercivity of aq(-, -), therefore Jo(v) > Jo(u), Yo € H}(£2). We have already
proven the implication the other way around in Theorem in particular in (1.7). 0

Analogously to what has been done for ([1.3]), T would like now to define the meaning of
weak solution for (1.10) and prove a similar result as in Proposition [2.12]

Definition 2.13. Let 2 C R" be an open set and f € L*(§2) then we say that u € H' () is a
weak solution of (1.10) if and only if,

a.(u,v) = / Vu - Vv dx—i—s_l/ vu ds = (f,v) 20, Vv € H'(92). (1.18)
7 00

In order to prove a result similar to Proposition we first need to prove coercivity of the
bilinear form a..
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Lemma 2.14. The bilinear form a.(-,-) as in Deﬁnition 18 coercive, i.e. there exists o > 0
such that Yv € H(2) the following inequality holds,

ool < aclv0), Vo€ H(Q)

Proof. We will prove this by contradiction, therefore we will suppose that a.(-, -) is not coercive,
i.e. there exists a sequence {v, },en € H'(§2) such that

1
vl g1y = 1, ae (U, vy) = ~ 0.

Now since {v,, }nen is @ bounded sequence in the Hilbert space H'(§2) and therefore in a reflexive

Banach space, there exists a subsequence {v,, }ren such that, v, ?) v. Furthermore by
HY(R2

Rellich-Kondrachov Theorem we know that, v, @) v. Weak convergence in H'({2) tells us
that,

/(v—vnk)w dx+/ V(v —wy,) - Vwdx =0, Vw e H' ().
Q Q

Now if as test function w we take v then we get that,

. . 2
i [Vl g2 o) | V0ll 2 > lim /v Vv dx = [Vl ),
JLIEO‘Unk‘Hl(Q) 2 ’U|H1(Q)‘

Using the fact that a.(v,,v,) = % — 0 from the above expression we get that,

2
/Q]an| dx — 0 = ||UHH1(Q) = ||U||L2(Q)'

Since vy, —> v we get [|v]| ;o) = limv,, =1, and since the gradient of v vanishes we know
£2(Q) k—o00

that v = | /m, but this contradicts the fact that a.(v,,v,) = % — 0 which implies,

/ v]* dx = lim vy, dx = 0.
20

a
Proposition 2.15. Weak solutions of (1.10)), defined as in are minimizers of (1.9) in

H'($2), and viceversa.

Proof. The proof is analogous to the one presented for Proposition [2.12] O

2.2 Existence and Uniqueness

Once the concept of weak derivative has been introduced is time to show that both Definition
and are well posed. The instrument to do this is the Lax-Milgram theorem, for which
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I would like to give two different proofs. The first one will follow from properties of Hilbert
spaces. The second (and more general one) is a consequence of convex minimization results
and it is nicely connected to the calculus of variation prospective that we have introduced in
the previous section.

Theorem 2.16 (Lax-Milgram). Let X be a Hilbert space and consider the variational prob-
lem,
find u € X such that a(u,v) = F(v) Vv e X. (1.19)

Assuming that the following properties are satisfied:

1.a: X x X — R s a coercive and continuous bilinear form;
2. F : X = R is a linear and bounded functional, i.e. F' € X*;

then the above mentioned variational problem admits a solution, furthermore this solution is
UNIQUE.

Proof. We notice that if a(-,-) is coercive and continuous then we have the following chain of
inequalities holds,
2 2
af-Ix < al-) < M|y,

where o and M are respectively the coercivity and the continuity constants. In other words
the bilinear form a(,-) induces a scalar product which is equivalent to the canonical scalar
product in X. Therefore using Ritz representation theorem we identify X with its dual X* and
therefore given F' € X* there exists u € X such that for all v € X the following identity holds,

a(u,v) = F(v).
Now if uy, uy are two solutions of (1.19) then we know that,

a(uy,v) — a(ug,v) = F(v) — F(v) =0 Yu € X,

a(u; —ug,v) =0 VYo e X,

Taking as test function v the difference u; —uy and using the coercivity we get that ||ug — uq||
is null, therefore u; and us are two identical elements of X. O

Corollary 2.17. The variational problem (1.16)) and (1.18) have solutions, furthermore the

solution in unique.

Proof. Both variational problem verify the hypothesis of Lax-Milgram theorem, in fact we have
already proven the coercivity of ag and a., while the continuity of a. and ay can be obtained
simply applying Holder inequality. O

Remark 2.18. 1 will assume that the reader is as skilled as the writer in Functional Analysis,
i.e. very little, and therefore is working with one key principle from F. Brezzi in mind: “Do
not identify any space that is not £2(§2) with its dual”, [14] Chapter 4. How can we deal with
the fact that we have just violated this principle? Well let us start by observing an instance
of where this warning comes from. We know that H*(£2) C £?(2) and therefore the following
embedding exists £2(£2)* C H'(£2)*, identifying £2 with its dual we get,
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HY(Q) € L2(0) ~ L2(0)* € HY(Q)".

If we not only identify £2 with its dual but at the same time we identify H'(£2) with its dual
we get the contradiction,

HY(2) C L2(02) ~ L2(2) ¢ H(2)* ~ H'(02),
L3(2) = H(92).

This shows us that the problem with identifying a space different from £2(§2) with its dual, as
we do in Theorem [2.16] only subsists if then we also identify £*(£2) with its dual. This double
identification doesn’t occur in Theorem [2.16] but might occur later on, therefore we will provide
the reader with a proof of Theorem that doesn’t require the use of Ritz representation
theorem.

We will begin introducing the reader to a well known result in convex analysis.

Lemma 2.19. Given a reflexive Banach space X and a continuous and strongly convex func-
tion,
J: X =R,
if the following conditions are satisfied,
1. lim J(z) = +o0,
]| —o0
2. K is a closed conver subset of X,
then there exists a unique element x* € K such that,

J(z*) = inf J(x).

zeK

Proof of Theorem[2.16. First of all we notice that all Hilbert spaces are reflexive Banach spaces,
furthermore X being a Hilbert space is convex and closed. Then we consider the energy func-
tional,

J: X =R,

u > a(u,u) — F(u).

Since af(+,-) is coercive and F'is a bounded linear functional, the following chain of inequalities
holds,

2
J(u) = allullg o) = CFllull o)

From the above inequality we clearly see that as |lu[| ;o) — +o0o then J(u) — +oo. Now in
order to apply the previous Lemma we only need to check that J(u) is a strictly convex
functional. First of all we notice that for all ¢ € [0, 1] and u,v in X we have,



20 The Poisson Equation
JGu+(1—ﬂv>:a/w+{1—thu+(l—ﬂg>—F(m&%l—tﬁ)

t2a(u,u) + 2t(1 — t)a(u,v) + (1 — t)%a(v,v) — tF(u) — (1 — t)F(v)

t2a(u,u) — 2t%a(u,v) + ta(v,v) + O(t)

ta(u —v,u—v) + O(t),

since the coefficient of the quadratic term in J(tu+ (1 —t)v) is a(u —v,u—wv) which is positive

given the fact that a(-,-) is coercive, then J(-) is convex. Furthermore since a(-,-) is continuous
and coercive the coefficient of the quadratic term is null if and only if u—v is null, i.e. u = v. O

Remark 2.20. More often then not the Ritz representation theorem is proven using the reflex-
ivity of Hilbert spaces or by explicitly constructing the Ritz representative. But it is worth
mentioning that the Ritz representation Theorem can be viewed as a consequence of Lemma
I redirect the reader interested in this type of proof to [53].

3 Regularity in Smooth Domains and Point Singular Domains

We would like now to study the regularity of the weak solution for the partial differential
equation . I redirect the reader interested in developing a better understanding of the
concepts introduced in this section to [47, 64 55]. The idea behind elliptic regularity is that
ideally the solution u of is more regular then its data f. In order to justify this expectations
of ours I will begin with a heuristics, i.e. from ([1.1) we know

f? = (Auw)?,
d
/ f2dx:/ (Au)*d x = Z 02 w02 u dx,
Rd Rd ij—1 R4 ‘ J
d d
S Z / in@cjua%u dx = Z / Oy ;U O, o u dX = / }DQU}Q dx. (1.20)
ij=1 R4 i1 R4 R4

From the above computations we get the idea that if the data f lives in £2(£2) then also D*u
lives in £2(£2) and therefore u € H%(§2). In order to make the above heuristic formal we would
need to be able to swap the order of differentiation as done in ; sufficient conditions in
order to do so, in terms of C* regularity, are given by Schwarz Theorem, i.e. u € C3(2). Clearly
requiring u € C?(2) is not useful in order to have u € H?*(02).

Definition 3.1. We say that the triplet (A, B,C) is a shift triplet for (1.1) if u € A solution
of (1.1) and f € B imply u € C.

Theorem 3.2. Assuming that a;; € C'(2) and b;,c € L®(12) then <H1((2),£2(Q),H2

loc

(2))
1s a shift triplet for the weak solution of the Poisson equation in the interior of {2. Furthermore
if wis compactly included in §2, i.e. w CC {2, then we have the following estimate,

lell ey < O, 2) (I Loy + el o)
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Proof. 1 redirect the reader interested in the proof of this result to [47], Chapter 6. O

Corollary 3.3. Let uw € H' () a weak solution of (1.16) with f € L*(02) then u is also a
solution (1.1)) almost everywhere.

Proof. Since ( Y(2),L%(2), H,
H} (). Since u € Hf

loc loc

(Q)) is a shift triplet for (1.16) then we know that for u €
(£2) we can integrate by parts to obtain,

loc

a(u,v):/Vqu dX:/vAu dX:/fU dx  Yve C%(1),
7 Q 0

therefore applying the fundamental lemma of calculus of variation we have that (1.1 is verified
almost everywhere. O

Following the same argument that one uses to prove the previous Theorem it is possible to
generalize the previous Theorem to higher order derivatives.
Theorem 3.4. Assuming that a;; € C™ () and b, c € L>(82) then <H1(Q), H™(£2), HZ;LC”(Q))
18 a shift theorem for the weak solution of the Poisson equation in the interior of £2. Furthermore
if w 1s compactly included in (2, i.e. w CC (2, then we have the following estimate,

pm < Clw, 2) (1]

I iy + ll )

Until this moment we have considered the regularity elliptic problem without taking into
consideration the boundary, this is known as interior regularity, it is now time to deal with
the boundary regularity. I would like to sketch the path the reader can follow in order to
use interior regularity to prove boundary regularity. Since (2 is pre compact it is possible to
find a finite covering of (2, i.e. {w, CC 2 : k € K}. Furthermore if we assume {2 has a C?
boundary then it is possible to find a sequence of C? diffeomorphisms &, (Bo(rk) N R*) = W
Now we can define the partition of unity & such that & is a mollifier with support & and
> rer &k = L. Last by symmetry we can use the interior regularity, i.e. Theorem to assert

P (&pu) € H? <Bo(rk) N R*) and reconstruct u as follow,

w=3" =D O (Bu(u) ) € HA(2).

keK keK

Theorem 3.5. Assuming that a;; € C*(£2) and b, c € L>(82) then (H&(Q),LZ(Q), HZ(Q)) is
a shift triplet for (1.16)), provided that 0(2 is smooth. Furthermore the following estimate holds,

ull gy < €@, 2) (11l ez + Il gy )
Corollary 3.6. Assuming that a;; € C™ () and b;, c € L>(02) then (H&(Q), H™(£2), Hm+2(!2))

is a shift theorem for (L.16)), provided that 0f2 is smooth. Furthermore the following estimate
holds,
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lll rsagy < C 2 (1l + Nl 2 )

Now a key assumption in order to follow the proof sketch before was that the boundary
of {2 was smooth, in particular C?. If this assumption is dropped things becomes much more
complicated. In order to present the regularity of the elliptic problem in domains with corner
I would like to introduce the reader to an illuminating example. The idea to use the particular
geometry shown in the next example comes from the introduction of [88].

3.1 Pacman Example

In this example we will study the eigenvalue problem associated with (1.3} in the domain
depicted in Figure[1.2] using the technique of separation of variables. We will make one further
assumption dictated by the physics of the problem, i.e |®(p,0)| < co. As usual we assume @

Fig. 1.2: In the figure the domain where we solve the Dirichlet eigenvalue problem is drawn.

depends separately upon the radius and the angle of the circular sector, ®(p,0) = O(0)R(p),
expressing the Laplacian in polar coordinates we obtain

1 1
Ad(p,0) = &2b(p, 0) + Dob(p, 0) = 002(p.0) + ;992@(,0, 0) + 950(p, 0)

1 1
AD(p,0) = ;R/(p)Q(@) + ;R(p)@”(e) + R'(p)O(0)
therefore imposing the eigenvalue problem we have the following expression,

A@(p, 9) = —)\QS(I@ 9)

SR (20(0) + R(p)6'(6) + R'(1)€(0) = ~AR(p)O(0).
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We perform some algebraic manipulations to obtain on one side an expression in 6 and on the
other side an expression in p.

1 1 / 1 1! /!
@x)  SR0en ;R(p)@ (6) + R'(p)O(6) = —AR(p)O(6)

(rem
)
%"((j)) - pf;g;’; +p R”fp )> Y (1.21)

Now since one side only depend on # while the other only depend on p we obtain a well known
one dimensional eigenvalue problem,

0"(0) = —uo(6),

(1.22)
0(0) =O0(3r) =0

It is well known that (1.22) has the following solutions,

iy = <§n)2 6(6) = sin(gne)

which together with (1.21]) gives an ODE for R(p), i.e

R(p) = oR"(p)
"Rip) 7 Rp)

PR (p) + pR'(p) + R(p) (A = in ) =

Performing the variable change z = \/Xp we obtain Bessel differential equation,
PR'(2) + 2R (2) + (2 — 02)R(=) = 0, 02 = i

Bessel ODE has the following solution, R(z) = AJ,, (2)+BY,, (2). Since we have the hypothesis
|R(p)] < oo as p— 0 then B =0, i.e.

R(T) = Jan(\/XT%
using homogeneous Dirichlet boundary condition we get R(1) = J,,(v/A) = 0 and therefore

must be equal to the square of the m-th zero of J,,, i.e. A\ = (2,,,)%. This yields the following
solution to the eigenvalue problem associated with (1.3)),
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3

2
D (p,0) = Ja, (Zmmp) Sin(—ﬁn), Amn = zfmn.

Now we notice that using the fact that when p — 0,

1 Zmn P\ *m
JO{ m,n ~ ( x ) 9

then we have the following approximation for &, ,, :

2 2
Ppm(p, 0) = Cpynps” sin<§n0>.

(1.23)

Computing the norm in W2 (Bp(0)> and W22 (Bp(0)> we can show that @, does live in

WL2(£2) but not in W?%(£2). Furthermore if one uses approximation ((1.23)) to compute the
Gagliardo-Slobodeckij semi-norm we can show that &,,; € Wg_a(ﬁ). Expanding a generic
solution of (1.16)) in the eigenspace we notice that the singular functions S,, are of the form

Dy 1 if f € L2(92). In general the following result holds,

Theorem 3.7. Let us consider a domain 2 C R? with a re-entrant corner of aperture w. If

f € WOP(Q) then ug € WyP(12) is such that,

ug = ConSi € WP(2),

where the S,, are a particular set of singular functions belonging to the space W*=5=52(()).

Furthermore, (W&’p(ﬂ), WOP($2), W2’p(0)> is a shift triplet for ug — Y, CrSp,.

Proof. 1 redirect the reader interested in the proof of this result to [55], Chapter 4.
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Weighted Sobolev Spaces

In this chapter I would like to introduce the notion of weighted Sobolev space, later I will
focus my attention to particular classes of weighted Sobolev spaces that are very useful when
dealing with singular domains. Last T will show how to approximate functions in weighted
Sobolev spaces using a piecewise linear interpolant. The idea of using weighted Sobolev spaces
to study singular problems has a long history, I redirect the reader interested in this topic to
[39, 37, 42], 12, 34, [78]. Last I redirect the reader interested in generic properties of Muckenhoupt
Sobolev spaces to [86] and [2].

Definition 0.1. A weight is a function w € L. (R?) that is positive almost everywhere.

One important feature of weights as defined above is that they induce a measure on the
Borelian of R, i.e.

w: BRY) — R,

e o

It is a well known fact that the above measure is absolutely continuous with respect to the
Lebesgue measure, perhaps a more interesting observation is that the Lebsegue measure is
absolutely continuos with respect to w. A class of weights that will be of particular interest
to us for the remainder of this chapter are Muckenhoupt weights. This class of weights was
first introduced to characterize for which weights is the Hardy-Littlewood operator bounded in
LP(R?), [76]. The reason why we focus on this particular class of weights is that they have some
very desirable properties, one among all they have the so called strong doubling property,
that will be essential in the construction of our interpolant.

Definition 0.2 (Muckenhoupt Weights). Given a weight w € L], (R?) we say that w is
Muckenhoupt of class p, i.e. w € A,(R?) if there exists C,,, > 0 such that,

-1
sup <][ wdx) <][ WTr dx)p = Cpw < 00.
{B:B ball in R%} VB B

I will now introduce the reader to some of the previously mentioned desirable property of
Muckenhoupt weights.

Theorem 0.3. Let p € (1,00), w € A,(RY) then the following statements hold,
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2.Cpw > 1,
8. A,(RY) C A.(RY) and C,,,, > C,, for all p,r such that 1 < p <r < oo,
1

4. Wir € Ay (A and Cp/wL = Cps', where ]l)—l— i =1,

-p
5. The class of A,(R?) weights is invariant under the composition of isotropic dilation and
translation.

Proof. Let us prove the above statements in order.

1. From Definition we know that for a fixed ball B C R, we have:

<]{3de> <]{3wllp alx)p1 = Cpu < 0,

(o) = ((fem) o) <

this is because the Lebesgue measure is absolutely continuous with respect of w and therefore

the quantity ((fB w dx)

1
doesn’t explode.

2. We begin observing that 1 = wrw b, Using Holder inequality we the obtain,

1 . p=1
1:][w11w_117dxg (fwdx)p(][ wﬂdx) ? ,
B B B

the only thing left to do is to evaluate the same expression at the power of p and observe
that since we know both terms of the inequality are greater then zero the inequality sign
doesn’t change order.

3. Once again we make use of Holder inequality in order to observe that if 1 < p <r < o0

then,
1 r—1 1 p—1
<][ wi-r dx) < <][ wI-p dx) )
B B

We can multiply the above expression by wadx and take the supremum on {B
B ball in R} to obtain,

1 r—1 1 p—1
sup J[ w dx<][ wi-r dx) < sup )7[ w dx<][ wi- dx) :
{B:B ball in R}/ B B {B:B ball in R4}/ B B

Now that we know C,, < C,,, it is clear that all u € A,(R?) also live in u € A,(R%), i.e.
A (RY) C A (RY).

4. Applying Definition (0.2)) with w equal to W we get the desired inequality.

5. We now consider an isotropic dilation composed with a translation x — ax + b and the
weight W(x) = w(ax + b), then we notice:
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1

1
w(x)dx :][ wlax +x)dx = — ][ w(y) dy :][ w(y) dy,
]{BT(X) () a” |B(x)|) B, x) Buay (x+b)

therefore @ is a Muckenhoupt weight, in particular @ € A,(R?).

O

Corollary 0.4. Let w € A,(RY) with p € (1,00) and let E C R? be a measurable subsel of

B C R%, a ball, then:
| B|\P

Proof. Since E C R is measurable then we have,

H. o L .
\E|:/1dx:/w;w_;dxg (/wpdx)p (/wdx)
E E E E

EC P

1 1
We use the fact that w is a Muckenhoupt which together with — = b to obtain,
p p

<][ wdx) (]{Ewl P dx) ! < Cpuw < 00,

1
< (Cp,w>p < 00,
1

(fotax)” < (o,,,w)i(][ wix) " < oo,
E E

In the last row we didn’t change the sign of the inequality because we know from Definition
the quantity we are interested in is less then one. Furthermore the integral on the right hand
side of the above expression is different from zero because we know the Lebesgue measure is
absolutely continuous with respect to w. Combining the last inequality with we obtain,

1 1

B| < (op,w)%w);ww(]é wix) 7 < (Cpu) "w(E) Bl |Blrw(B)” 7 w(B) 7,

51 < (c Q%%)pw\.

To conclude we just raise everything to the power of p and multiply and divide by what is
needed. ad

SIS

Remark 0.5. A particular case of the above Corollary is the fact that given two balls centred
at x, i.e. By,.(x) and B,.(x), we then have:
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w(Ba(x) < 0(%) ,
w <Bgr(x)> < Cw (BT(X)).

This last inequality is precisely what we called the strong doubling property of the weight
w: B(RY) - R.

Now it is time to introduce the weighted counterpart of the Lebesgue space and of the
Sobolev space. Furthermore we will give a brief characterization of those spaces, by some of
their major properties.

Definition 0.6. Given w € A,(R?) and 2 C R? a pre-compact set, we define the Muckenhoupt
weighted Lebesque space LP(w, §2) as the set of measurable functions u : 2 — R such that,

1
il = ([ Il wix)” < o (2.2)

We call W*P(w, (2) the set of measurable u : 2 — R such that Dou € LP(w,(2), for any
multi-index o such that |a] < s.

Proposition 0.7. The Muckenhoupt weighted Lebesque space LP(w, £2) is a Banach space with
respect to the norm defined in (2.2)).

Proposition 0.8. The Muckenhoupt weighted Lebesque space LP(w, (2) is a subset of L}, .(£2).

Proof. Since w is a Muckenhoupt weight we know from Theorem (0.3 that w 71 € L1 (R?)
and therefore for any ball B C {2 the following holds,

1 _1 H 3 a5
/\u!:/ lulwrw™» < (/ !u\pw) (/w p—l) < 0.
B B B B

1 Weighted Sobolev Spaces for Singular Domains

For the remainder of this chapter I would like to focus my attention on a particular Mucken-
houpt weight, i.e. w(x) = |x|”. A particular case of weighted Sobolev space with w(x) = |x|”
are Kondrat’ev and Maz’ya Sobolev spaces on domains with a specific geometry. At this point
the reader might be wondering why I want to introduce this “exotic” weighted Sobolev space.
The answer is given by the fact that Maz’ya and Kondrat’ev Sobolev spaces allow to retrieve
desirable shifts similar to the one presented for smooth domains also in the case of domains
with point singularities. In fact Kondrat’ev and Maz’ya Sobolev spaces are a particular case
of weighted Sobolev spaces for which the weights depend on the geometry of the domain. I
redirect the reader interested in weighted Sobolev space for domains with point singularities
to |29, B0, 67, 15].
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Proposition 1.1. The weight w(x) = |x|" is a Muckenhoupt weight of class A,(R?) if v €
(—d,d(p—1)>.

Proof. We begin by observing that given a weight of the form x — |x|” then we can exactly
compute the measure of a ball with respect to w,

o(Bixo) = [ wbjax= [ alax= [ vy,
Br(x0) Br(x0) B (0)
r 1
- C/ ¥y = ¢ | o+
0 0

which is finite for 7 € (—n,00). If we compute the measure of a ball with respect to W ,
following the same steps presented above, we obtain:

1 1 vy
/ wi-» =(C rlffrd,
Br(xo0) 0

which is finite ig v < d(p — 1). Combining this last two computations it is easy to see that if
w € ( —d,d(p — 1)) then w is a Muckenhoupt weight. O

For the remainder of my thesis I will assume that (2 is a pre-compact subset of R? with
smooth boundary except for a point where it has a corner of aperture «, similarly to the domain
depicted in Figure A useful quantity to define is 8 € R such that,

0<—B-1<=. (2.3)

Definition 1.2 (Kondrat’ev-Sobolev Space). Given a measurable function u : 2 — R we
define the following quantity,

1
m 1 2
2 2 a, |12
Huuicg(n) = (;O|U’;cg) ’ |U‘1cg(m = <|Z_kHD UH£2(|X|26+207Q)> :

Furthermore we will call the Kondrat’ev-Sobolev space, K7 (§2), the set of measurable
functions u : 2 — R with finite ||uH,Cg1. It is important to notice that B must be chosen in

order to verify (2.3).

Now it is possible to prove our first shift Theorem, that improves on the one presented at
the end ot last chapter, i.e. Theorem [3.7]

Theorem 1.3. The triplet (Hg((?), HUHIC;?H(Q)? ||u||,cgl+2(_(2)> is a shift triplet for (1.16]).

Proof. Unfortunately proving this result would be out of the scope of my thesis, but I redirect
the reader interested in such result to [I5], Chapter 5. 0
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The limitation of the above stated regularity result, and in particular of Kondrat’ev-Sobolev
spaces, is the inability to capture the singularities presented by the eigenfunctions of the mixed
Dirichlet-Neumann elliptic problem, i.e.

—Au=f in{
O,u=0 onlyCOQ. (2.4)
u=>0 inI'p C 00

In order to deal with this particular type of problem we will use Maz’ya-Sobolev spaces, i.e.

Definition 1.4 (Maz’ya-Sbolev Space). Given a measurable function u : 2 — R we define
the following quantities,

m 1

2 2

||U||Wm 2(‘x|2[5+2m .Q <Z |U|Wk,2(‘x‘25+2m79)> )
k=0

|U|Wk 2(‘X|2ﬁ+2m ) ( Z HDO‘UHE2 (| |25+2m Q))

|laf=k

D=

Furthermore we will call Maz’ya-Sobolev space, Wm’2(|x|25+2m,9), the set of measurable

Junctions u : 2 — R with finite ||ul]yymo(g2o+2m ). Once again we will denote W2 (x5 )

the closure of the smooth functions with compact support with respect to the H-||Wm72( 26+2m )

[

Theorem 1.5. The triplet (Hl(Q),Wm’Q(\X|2(*B+m+2),Q),Wm+2’2(|x]2(ﬁ+m+2),Q)) is a shift
triplet for the weak formulation of (2.4)).

Proof. 1 redirect the reader to interested in the proof of this result to [67], Chapter 7. O

Corollary 1.6. The triplet ( L(02), W2 (|x[ 2+ Q),Wm+2’2(|x\2(’3+m+2),Q)) is a shift
triplet for (1.18).

Proof. The key to prove this result is the work by Z. Mghazli, [75], where it is showed using
techniques similar to the one presented in [55] that (2.13)) and the weak formulation of (2.4)
present the same singular behaviour on polygonal domains. A careful reader might be bothered
by the fact that {2 is not polygonal. Since we know that for smooth domains (1.18)) enjoys a

shift triplet like the one presented in Theorem then we are only concerned by the singular
part of the boundary which is of polygonal type. O

Before going to the next part of this chapter which will be focused on the approximation of
functions in Munkenhoupt weighted Sobolev spaces we would like to address the existence of
a Gagliardo-Nierenberg-Sobolev type embedding, i.e.

Wo (X7, 2) = L2 ([, 2). (2.5)

In order to do this we will first discuss the existence of a general continuous embedding of the
form,
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L
Wyl (w, £2) — LP(p, 2),

for Muckenhoupt weighted Sobolev space, then we will derive (2.5 as a particular case. T will
first introduce a Lemma that is going to be fundamental to prove the following result.

Lemma 1.7. Let F be a Lipschitz continuous function on B,(xo) C R?, p € (1,q], p € A,(R?)
and w € A,(R?) such that:

1 1
BT q Br p
r p( (XO)) <0, w( (XO)) ’ (2.6)
R\ p(Bgr(x)) w(Bgr(x))
for all x € By.(1xg) and 0 < r < R. Then the following inequality holds,

- “o(u r b w)|Pw(u p.
(p(BR(XO» AR >> <c <W<BR<X0>) [ v >)

Proof. The proof of this result can be found for p € (1,q) in [24]. Furthermore it has been
proven for Holder continuous function when p = ¢ in [73]. 0

Q=

Theorem 1.8. Given two weights w, p that satisfy the hypothesis of the previous Lemma then
there exists a continuous embedding,

Wyl w, 2) — LP(p, 2).

Proof. In order to prove this result we first embed {2 in a ball of radius R and consider v
the extension of v by zero outside of 2. We first notice that when p = ¢ thanks to Morrey’s
inequality we can apply the previous Lemma and conclude. When p € (1,¢) we need to argue

o . Wh2(w,02) ~
by density i.e. we consider a sequence v, € C°({2) such that v, 02 % and observe that

for all n € N the following inequalities follow from the previous Lemma,

[onll ., (rBr(xo) < Rp(Br(x0)) *w(Br(x0)) * V]| ., (o))

Bringing the above expression to the limit and observing that pw satisfies the strong doubling
property we have,

loall ¢\ < CChp, Co)diam(2)p(2) 1w(2) 7 [Vuwl|
L (p,_Q) L (w,Q)

which gives us the desired embedding. O

Remark 1.9. T urge the reader to notice that we are developing an embedding of Wy (w, £2) in
LP(p, $2) and not of W4 (w, 2). From the proof of the above Theorem the reason appears clear,
in fact given the fact we work with domains that do not have smooth boundaries it would not
be possible to extend u by zero outside of 2.

Corollary 1.10. Ifp € (1,q], v € (—2,2(p— 1)) and
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26+3)+1

2(8 4+ 3) =

4
p7
then the continuous embedding W&’q(’X|2(ﬂ+2), 2) — [,p(]x|2(ﬂ+2), 2) exists.

Proof. To obtain this result it is just a matter of combining the above result with Proposition
and computing exactly all the terms involved. 0

2 Approximation of Functions in Weighted Sobolev Spaces

We are interested in approximating the functions of W22 (Q, |x]2(5+1)>. In order to do this

I will introduce the quasi interpolant developed in [79], for the piecewise linear case. Other
examples of weighted quasi interpolant can be found in [43] and [34].

Definition 2.1. A domain 2 C R? is a star-shaped with respect to a ball B C §2, if for all
x € (2 there exists Xp € B such that the line connecting xp and x is entirely contained in (2.

The first result we need in order to construct the interpolant is a Poincaré type inequality
for weighted Sobolev spaces, similar to the one in Lemma [2.10

Lemma 2.2. Let w € A,(R?), with p € (1,00), 2 pre-compact in R? that verifies the above
definition, then given f € Lh(w, 2) there exists u € [Wol’p(w, 2)]" such that, V-u = f, and
the following inequality holds,

1l )™ < Cl N0y

Proof. This result in the non weighted setting is a consequence of the Banach close range
theorem and Ladyzhenskaya Theorem on surjectivity of the divergence. The same result in
the context of weighted Sobolev space has been proven by R. G. Duran and F. L. Garcia in
[40]. O

Theorem 2.3 (Weighted Poincaré Inequality). Let 2 C R? be as in the above definition,
with diam(2) = 1. Furthermore let x € C°(§2), such that / xdx = 1. Then fized p € (1, 00)
Q

and w € Ay(R?), for all v € W'P(u, 2) such that / vy dx = 0 we have:
0

||U||£p(u,(z) < CHVUHE”(MQ)’

where [ is an isotropic dilation - translation of w and C' depends only on x, B, Cyp..

Proof. We know from Theorem [0.3] that 1 € A,(R?) and C,,,, = C,, .. Given v € W'P(pu, 2) we
define the auxiliary function,

v = sign(v)|v]’ p — </ 5ign(v)|v|p_1,u>xdx.
Q

If we apply Holder inequality to the previous equation we get,
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11 3 . P B
plof gt d < (ol dx)* (| pdx)” < COup)0l 2 < Clup) 01200
2 2 2 a
We define t = —% then t + ¢ =1 and ¢(p — 1) = p therefore,

(2.7)
: 1 )
([ ntorrax)” = ([ wlsignlor = ( [ signto)lorn)x| dx
02 02 (0]
.
< (Lol )+ ([ bl ) g S ol s

Once again we use Theorem to assert that u' € A,(R?) since t = %, in this way we can apply

the previous Lemma since fQX = 1 implies vdx = 0, i.e. there exists u € [Wol’q(/ﬁ, Q)}n

2
such that,
- <clfy] | 2.8
(el [Wl’q(utvf?)] - v £4(ut,2) (28)
Finally we notice that since by hypothesis / vx dx = 0, then we have,
I7;
[0l Z (0 2) = / vV dx + (/ sign(v)\v]p_l,udx) / xvdx = / v dX.
7 I7) 2 7
Substituting v by V - u we get,
11
[0z () = /QU(V cu) dx < / |uVv|dx = /Q ‘qu,upu 7| dx
I 1 1 ([@3) N
p p t),,14 q
< ([ uvolrax) ([l ax)” 2 o) S 90l 01
a

Since we have proven a weighted Poincare inequality we can begin the construction of a
piecewise linear quasi interpolant for functions in WP (w, {2). To do so I will begin by some
geometric assumption on the mesh.

Definition 2.4. We will call T = { i € I} a simplicial mesh of a d dimensional polytope

Q, if T; are simplezes, 2 = Uie/T; and |2| = 3., |Ti|. Furthermore we say that the mesh is
compatible if the intersection of two T;, T; € T s either emptly of a common d—1 dimensional
simplex. Last we say that the mesh T 1is shape regular if there exists o7 > 0 such that,

max { ZT T e 'T} <or, (2.9)

where hy s the diameter of T and pr is the diameter of the inscribed sphere in T.
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I will focus my attention on the two dimensional case, mainly. Given a simplex 7" € T we

denote N(T') the vertices of the simplex 7" and N (T) the vertices of the simplex T that do
not touch the boundary of (2. Furthermore the union of N (7T') for all T € T T will denote by

N(T), similarly the same notation N'(T) is adopted to represent to union N'(T) for all T € T.

As usually done in the finite element method I introduce the spaces V and V' as follows,

v={ve@);wr e ()T T},

V= {UGCO(E); wr € Py(T)VT € T and 7o(v) EO}. (2.10)

In particular any function of v € V or vg € V can be uniquely determined by its degrees of
freedom, i.e.

v = Z Vy Py, vy = Z Vy Py, (2.11)

ZEN(T) 2EN(T)

where v, is the degree of freedom associated to the base function ¢,, which is the value of v
at the node z. Last we will call S, the union of the elements that contains z inside and St the
union of all elements of the mesh that have non empty intersection with 7. We now consider
¢ € C*(R") such that [[¢)[[,1ge) = 1 such that the support of ¢ is contained in Bp()(0),
which will be our averaging function. Since we need to average inside each element of the
triangulation we define the following scaling of 1,

() = <m2‘z”2w(<m+ 1,3Z<Z‘X>).

Now for all z € NV and v € W™P(w, §2) we define the averaged Taylor polynomial, also
known as Sobolev polynomial, of order m around z, as:

Qroly) = / P o(x, y )iy () dx,

where P™v(x,y) is the usual Taylor polynomial, i.e. P™v(x,y) = >, < LD(x)(y — x)*

Remark 2.5. The reader now can clearly see why it is important that the support of 1, is
contained in S,. In fact if supp(1,) C S, then we can integrate by parts to show that Qv is
well defined for all v € £!(£2). Furthermore since (2 is pre-compact and LF(w,2) C L], (£2)

loc
then Q7v is well defined for all v € LP(w, £2).

It is now time to discuss the property of averaged Taylor polynomial just introduced; the fol-
lowing proposition will be a generalisation for weighted Sobolev space of the concept introduced
in [20], Chapter 4.

Proposition 2.6. Given a function v € LP(w, £2) the object QU'v, as defined above, enjoys the
following properties:
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1. Q7v is a polynomial of degree al most m,
2. Q7 is a projection,
3. D*QTv = QM MDY, for all v € WIbP(w, 2) and o € N? such that |of < 1.

Proof. 1. Since we are integrating in the variable x and P™v(x,y) is a polynomial in y the
first property comes for free.
2. The key ingredient to prove this is that the Taylor polynomial is a projection.

arlar = [ [ [ Prue vt i 5.2ty dy
= [ | PrPruey) (v, a)ax)a(y) dxdy

:(/ P™u(y,z)Y(y) dy> ( ) P (x) dX> = Q.

3. First we notice that if v € Wlel1(£2), then D € L(£2) and therefore it make sense to

- . wlell( .
speak about , Q7' *! Doy, Now we consider v, € C°°(£2) such that v, = v, and notice

that:

DQy'vy(x) = ) D*P™u,(x,y)Y(y) dy = / Py, (x, y)0(y) dy = Q™1 D, (x).

Passing the above expression to the limit we obtain the wanted equality for v € Wh1(£2).
To conclude we observe that following the same argument as in Remark we have
Whl(w, 2) c Whi(0).

g

Lemma 2.7. Let w € A,(R?) and z € /i/'('TL if v € WEP(w, S,) with 0 < k < 1 the following
wnequality holds,

k
||Q;HL°°(SZ) S C<m7 77D)hz_2||]'Hﬁq(w—%) Z hlz‘U|leP(w,Sz)7
=0

where h, is the largest diameter of the element that form S,.

Proof. From the definition of ()" we have,



36 Weighted Sobolev Spaces

102 s = [ 32 D00y = )70l dx

Sz |a|<m EOO(SZ)
1 N N
< 20 || DUy — ) () dx
jaj<m 11 Sz £5(5y)
1 (e}
<= 2| [ DUy = %)M (wre s dx
laj<m 117 52 £5(5y)
If we fix k € [0,m] from the above inequality we get,
11
HQ?HLOO(SZ § Z Du(x)(y — X)), (X)wrw™ » dx
|a|<m Sz L2°(Sy)
1 1 1
—' Dkv(x)DO‘_k [(y — x)o‘wz(x)}wiafﬁ dx
Sz £2(S,)
1 k a—k « 1 _1
Sa Z SZD v(x)D [hzi/}z(x)}wpw » dx s

1
<07 2 hh 1D T s 111 3 1D 00 s,

<O(m D)1 1,4 ha Zh’HD’“ X 2.5

O

Let us start discussing the approximation property of the averaged Taylor polynomial Q%
and Qlv, for functions v € W'P(w, S,).

Lemma 2.8. Let 2 € N(T). If v € W'P(w, S,) then the following approzimation estimate
holds,

o= Q3| o,y < Chall V0l oo,

Furthermore the following inequality holds,

HD%‘@ < ChZHDIjVUHcP(w,SZ)'

1
Z) H[ﬁp(w,Sz)
Proof. We define the transformation,

zZ — X

hy

F,:x—X, X =

we will also define S, = F,(S,) and o(Z) = v(z). Let @06 be defined as follows,

@%:/Szwcﬁ,



2 Approximation of Functions in Weighted Sobolev Spaces 37
then thanks to the way we defined F, we have that the support of v is contained in S,.

QQ:/S wzdx:/ sz(i)hzdiz/ () dx = Q7.

S Sz

Using Theorem we have that @, =wo F, ! € A,(R?), since F, is a translation combined
with an isotropic dilation. Combining the last two statement together with the fact C,5, =
Cpw, we have the following estimate,

/ wlv — QR dx = b / alv — Qo dx. (2.12)
z Sz

Given the assumption (2.9) we have diam(S,) ~ 1, combined with 1 dX = 1 we have that
Sz

/ v — @05 = 0, which will allows us to apply Theorem to conclude,

_0_
z

G

Combining this last inequality with (2.12)) and changing variable from X to x we have,

< w. 1 P
LP(@2,52) Clor, @a, w)HVWHEP(wz,Sz)

o= @8l =12 [ 10— @S] ix

z

<hiC(or,ws,, @D)vaﬂngp(wz,?z) = h;C(o7, @y, Q/J)HVJ:UHM(WZ,SZ)-

In order to estimate || D,, (v — Q;)Hcp(w,sz) we define @15@) as follows,
@@ - [ (7@ + Vo) 7)o@ ar

As in the previous case we have the identity Ql(y) = @16@), furthermore since @16@) the
quantity 8@@1@@) is constant and therefore,

/ z 95, (W(f) - @lﬁ(f)) W(T) dz = 0.

Since Oz, (E(f) - @1@(@) has vanishing mean we can follow the same argument presented

above to obtain,
HD%(U - Qi)”m(w,sz) < ChZHDIjVUHLP(w,SZ)'

O

Lemma 2.9. Let z € N and v € W*P(w, S,) then we have the following approzimation esti-
mate,
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HU - Q;H‘Cp(w’sz) S C(Cp,wa O_T7 ¢) hi”UHWZP(w,SZ)'

Proof. First we apply Proposition to observe the following,
v—Qu = (v—Qu) — QY (v — Q;v> —Q° (Q;v - v), V(v—Q,v) = Vu—Q.Vv. (2.13)
If we apply the previous Lemma twice we then obtain,

< Ch,

< Chi|v )
LP(w,Sz) - Z’ ’Wg’p(wvsz)

| (0= lo) - @i (v - i),

V(v . Qi)

LP(w,Sz)

Therefore from (2.13) the only term we need to control is QO (Q;v — v), which using again
Proposition is equivalent to controlling Q% (Q;v — ng) Now we notice that for all linear

polynomials p we have Q° (Q;p—Qgp) = 0 and therefore we can add and subtract QY (Q;Q;v—
QQQ;) freely. We start from QO (Q;u — qu) and we subtract Q° (Q;Q;v _ QQQ;) to obtain,

Jes(@iv =)0, = [ [ 190t - @k by~ ayP

(| wlV(ele) - Qo) ax) [ W—Z¢g>q‘gc(o,,,w,UT,w)hgwwlp(w’Sz),

LP(w,Sy

H.

< w
Sz

where in order to obtain the last inequality we used the fact that fsz Y, (y)dy = 1 and
(fsz w_%¢g> is bounded. 0

I don’t need to develop this argument further in order to obtain an approximation estimate
also for v—@),'. This because in later chapters I will only work with linear finite element schemes,
but I redirect the reader interested in this results to [79]. Keeping in mind the notation used in
([2.11)) it is time to introduce an interpolant for function that are in W?P(w, £2). In particular
given a function v € W*P(w, 2) we define the interpolant I}, as follows,

L= Y Qlu(2).. (2.14)

2eN(T)

Now we will use Lemma in order to prove the stability of the interpolant operator I}, with
respect to the Muckenhoupt weighted Sobolev space W*?(w, St).

Proposition 2.10. Let W*P(w, S,) and T be an element of the triangulation T, then the
interpolant operator Iy, is stable with respect to the Muckenhoupt weighted Sobolev space
WQ’p(w, ST), 1.€.

|[./{/'U ’WQ,I)(U_,,ST) < ’U|W21P(w,ST)'

Proof. Using the definition of I}, given in (2.14) we have that,
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|[J1\fvlw2,p(w,sT) < Z HQi(Z)Hcoo(sz)‘¢2|w2w(w,sT)-
2eN(T)

Combining the last inequality with Lemma we can conclude. ad

Lemma 2.11. Given a function o € LY(w, S,) the following identity holds,
INQup = Qup.

Proof. This is a consequence of the fact that Qlp = p for all linear polynomials p and of
(2.14)). O

Theorem 2.12. Given T € T such that T is not a simplex with vertex on the boundary of 2
and v € W*P(w, St) we then have the following interpolation estimate,

1 2—k
‘v - ]/\/’U}Wk,P(w,T) < Chy |U|W2’p(w75T)'

Proof. Since the simplex T" doesn’t touch the boundary we consider one vertex z of T" such that

z € N. From the previous lemma we know that the following identity holds,
v— Iy =v— Qv+ I}Qv — I},
and therefore a simple application of the triangular inequality yields:

‘U B Ifl\/’|quP(w,T) < {U - Q;U{kap(w,ST) + ’]/l\/Q;U - [Jl\fvlwkvp(w,ST)'

The last inequality together with Proposition [2.10] Lemma and Lemma [2.9] yields the
desired interpolation estimate. O

Corollary 2.13. Given T € T and v € W?P(w, Sr) N Wy (w, Sr) we then have the following
terpolation estimate,

1 2—k
‘U - INU}ka(w,T) < Chy |U|W2’p(w75T)'

Corollary 2.14. Given T as in ([2.1)), that also verifies [2.9), and v € W?P(w, Q)N Wy* (w, 2)

we then have the following interpolation estimate,
1 2—k
|U - INU‘Wk,p(MQ) < OhT |U’W2,P(w,!2)'

It is also possible to prove interpolation result when using norms of different Muckenhoupt
weighted Sobolev spaces using embedding (2.5)).

Proposition 2.15. Let p € (1,q], p € A,(R?), w € A,(R?) such that [2.6) holds. If v €
WP (w, ) then there exists a constant vo such that the following inequality holds,

[v = voll o) < C diam(2)p(£2)1w(2) "7 [Vl £y )-
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Proof. Since (2 is open and bounded we can choose 0 < r < R such that the following chain of
inclusions hold, B o
B,(0) C 2 C 2 C Bg(0).

We can use the extension theorem for Muckenhoupt weighted Sobolev spaces proven in [26],
to find a v € WP (w, B(0)) such that,

g

< C|V .
EP(W,BR(O))_ | UHE”(“”Q)

Using the results contained in [73] and [24] we have the following inequality,

v — UQH[:P(%Q)) < H% o UQ‘ ) < CRP(BR<O))éw(BRm))_;va“m(“’ﬂy

£ (w,Br(0)

where v, is the weighted mean of v over Bgr(0). Using the strong doubling property we have
p(Br(0)) < Cp(12), since p(§2) < w(Bg(0)) the above inequality becomes,

o= vl ) < CRR(2) (2) IV )

O

Corollary 2.16. Let us consider a triangulation T that verifies the assumption (2.9)) and Def-
inition[2.1, p € (1,q], p € Ay(R?), w € A,(R?) such that [2.6) holds. Then for every T € T
and v € W*?*(w, St) we have,

||V(U - [/1\[>H£q(p,T) S C<UT> wa Cp,un Cq,w)th<ST>%w(ST)_%|U‘W272(w,ST)'

Proof. Let consider again T" € T and denote z one of the vertices of T. We first notice that
since p and w verifies (2.6)), we have thanks to Theorem the following embedding,

Wo (w, 2) = WH(p, £2).

In view of the above embedding we have the following inequality,

1 1 1 1

[V (v~ [N)”Lq(p,:r) <|[V(v- sz)Hﬁq(p,T) +[|V(Qqv - INU)qu(pI)‘
Using (12.14)) and Proposition we know that,
1 1 1

[V(Qzv - [NU)HE‘I(;},T) <C|V(v- Qz”)ch(p,T)‘

Combining the two last inequalities together with the fact that VQlv = Q%Vv we get the

following,
IV = D ooy < V0 = QaV0| oy
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Since QYVv is the average value of Vv on T' we can conclude applying Proposition m O






3

Finite Element Method

In this chapter I would like to study the application of the finite element method to domains
presenting point singularities, in particular I'll focus my attention to the domain depicted in
Figure [1.2; it is just a matter of calculation to generalize the idea here presented to domains
with sharper corners. We have already discussed in the previous chapter that when the domain
{2 presents a re-entrant corner we can not use the classical elliptic regularity which gives a nice
shift triplet. It is well known that due to the absence of the shift triplet previously mentioned,
the finite element method doesn’t have the usual rate of convergence. This phenomena is not
only observed in finite element methods, I redirect the reader interested in this phenomena
for finite difference schemes to [89]. The above described phenomena it known in the engi-
neering community as the polluting effect of the corner. The remainder of this chapter will
be structured as follows: I'll discuss in more detail the consequences of the polluting effect of
the corner in the context of the standard conforming finite element method and present the
standard a priori error estimate analysis for the finite element method in domains presenting
a re-entrant corner; next I'll introduce the penalty finite element method and perform an a
priori error analysis for this method. Once the penalty finite element method is introduced, I’ll
show numerical evidence that the penalty finite element method, with a specific choice of the
penalisation term, can retrieve optimal convergence with respect to the Sobolev space WEQ(_Q)
when the error is measured in the £2(£2) norm. Next I'll show the impossibility of retrieving
the optimal order of convergence using a weighted duality argument. It is important to mention
that penalty finite element method is not the only or the most efficient method to deal with
domain with re-entrant corners, but in my view it presents a very interesting case study for
the difficulty of proving the result observed numerically and for its intimate connection with
the Nitsche method that in recent years has become more and more popular. Let me redirect
the reader interested in using finite element on domains with corners to more useful result.
The hp-finite element method on domains with corners has been study by I. Babuska and B.
Q. Guo, as far as 'm aware of they were also the first ones to realize that weighted Sobolev
spaces are the correct setting where to study the error of finite element methods when dealing
with domains presenting re-entrant corner, more information can be found in [57, [5 58| [59].
I. Babuska and B. Q. Guo didn’t limit themselves to the Poisson problem they also treated
problems of elasticity and the Stokes problem, I redirect the reader interested in this kind
of result to [56, 60, 6I]. An other approach would be to use classical finite element methods
together with mesh grading, [6, 8, @, [10]. Furthermore it is also possible to construct finite
element schemes solvable using multigrid methods, as shown in [19] [18] 21]. Last it is possi-
ble to consider the energy associated with the problem to obtain least squares finite element
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method that are optimal when dealing with singular solutions as shown in [33]. This last idea
is different from what discussed in [44] 1], 80], involving an energy correcting term.

1 Conforming Finite Elements

In this section we will show an a priori error analysis for the conforming finite element method
using standard techniques presented in [27]. In particular we will focus our attention to domains
presenting a point singularity. To simplify the exposition of the idea here presented I'll focus
my attention to the domain 2 C R? depicted in Figure [1.2] Let us consider once again the

mesh 7 of the domain (2 and the discrete space V' and V' introduced in (2.10)). We consider our
toy problem (1.16) with data f € £2(£2), whose solution from now on will be denoted as uq.
We now introduce the projection operator H‘o/ that will give the finite element approximation

o

of uy on the discrete space V| i.e.

T, Wy*(2) = V. (3.1)

(VH‘C}U, Vvh> = (Vu,Vvh) ol e ‘o/

£2(2) £2(02)

As usual we ask ourselves if this projection is well defined. In order to answer this question we
can apply Hilbert projection theorem together with the following Lemma.

Lemma 1.1. The discrete spaces V and V are closed Hilbert linear subspaces of WY2(£2) and
Wy (02) respectively.
Proof. 1 redirect the reader interested in this result to [27]. a

Proposition 1.2. Let X be a Hilbert space and'Y a closed linear subspace of X, then for every
x in X there exists a unique y in Y such that,

1w =gl = inflle - 21l

2. the element y above introduced is uniquely characterized by, (x,2)x = (y,2)x Vz € Y.
Proof. 1 redirect the reader interested in this result to [22], Chapter 5. O

Corollary 1.3. The projection operator H‘C} s well defined.

Proof. First we notice that the bilinear form a(u,v) = (Vu, Vv)2() is a scalar product on
W,72(£2) because we have proven it is coercive in Corollary and it is obviously continuous

by Hélder inequality. Furthermore this scalar product is equivalent to (-, -)y1.2(). Since V' is a
closed linear subspace of W&’Q(Q) we can apply the Hilbert projection and conclude. O

As the reader have probably already noticed such a projection is of limited use since we
need to know a priori the solution ug to (L.16) in order to compute H‘o/uo. Using (1.16) we

know that (Vug, V") 20y = (f,v")r2(2), hence we can combine this together with (3.1) to
characterize the projection Z_[‘o/ug with respect to the data f, i.e.
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<Vﬂ‘c}u0, Vvh)£2(9) = <f, vh>ﬁ2(9) e V. (3.2)

This characterization of the projection (3.1)) becomes very handy when we notice that since V'

is a discrete space we can expand the function v» € V in terms of the basis functions as done
in (2.11]). This combined with the linearity of the scalar product, yields the following set of
equations:

Z u; <V¢Z’ v%)ﬂ(n) - <f’ ¢7’) £2(2) Vi € Jif(T),
2eN(T)

KU" = F, (3.3)

Koy = (6:,90,) Ey=(£.00) ., V2ne N,

£2(2)

where K is usually called the stiffness matrix, F is usually called the load vector and U”
contains the value of H‘C}uo at the nodes of the mesh. We will also call ul the projection IT.ug

to stress the fact that it has been computed using (3.3)). We now notice that (3.2]) becomes,

hoohy _ h o, _ h hoo 1,
ao(ug,v") = (Vuo,Vv )52(9) = (f,v >£2(9) Yo' e V. (3.4)

Proposition 1.4. Let us be given a mesh T that verifies (2.9) and Definition [2.1. Let uy be
the solution of (1.16)) and ul as above then the following energy error estimates holds,

o = | o) < CODRE Fl gy

Proof. First of all I would like to warn the reader that the proof here included is slightly
different from the standard one, because I wanted to make use of the interpolant constructed
in the previous chapter. The classical proof will involve interpolation estimate in fractional
Sobolev space, such as [38], and an argument similar to the one presented in [27]. We begin
observing that,

9 (1.17))
afluo = ugll o = ao(uo —ug, uo — ug) = ao(uo — ug, uo)

the last equality follows from Galerkin orthogonality, i.e. ag(ug — uly, v") = (f,0")r2(0) —

(f,v") g2 =0forallve V.
Once again using Galerkin orthogonality we observe that ag(ug — uff, I;ug) = 0 and therefore
we have,
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|2 B h 1 7 h 1
O‘H“O - UOHV\JL?(Q) < aO(UO — Ug, Up — ]NUO) < ||U0 - uoHW1,2(Q)”UO - ]NUOHWLQ(Q)

orfluo — “gwa(Q) < JJuo - [/{/UOHWLZ(Q)'

To conclude we observe that |lug — I}VuOHWl,g(Q) < Ch3 1 f1l z2(2)» this because of the fact that

(H&(Q),£2(|x]%, Q),W2’2(|x\§, (2)) is a shift triplet for (1.16) together with Corollary [2.16
once we observe that,

p(Sr) = [ ax<cmpon wsh) = [ ixiec<ond<onl
ST ST

O

Now that we have an energy estimate for the error of the conforming finite element method
I would like to proceed with the £2(f2) a priori error analysis, but before T would like to make
an observation:

12 [T17) L h
o~ oy = (V0 ) Voo =) ,
2 (a0 o) = (ot - s
H | f]
l|uo — u’(}Hi\}l,z(m < %”uo - “gHﬁ(Q)' (3:5)

This last inequality combined with Proposition tells us that the best possible error estimate
[ can obtain in the £2(£2) norm is of the form,

Huo — ugHLQ(Q) < Ch%_€||f”z:2((z)'

Indeed is possible to prove using the standard Aubin-Nitsche duality argument that the error
in the £2({2) norm decays as described in the previous equation.

Theorem 1.5. Given a mesh T that verifies (2.9) and Definition [2.1], let ug be the solution of
(1.16) and ul as in (3.4). Then the following energy error estimates holds,

o = ]| 2y < CDRS ¥ fll 220

Proof. To begin we define the quantity ¢, = ug — u? and consider the dual problem, find
wy € W,y2(£2) such that

ao(wp,v) = (Vwo, vv)z:?(rz) = <5h,v> o) Yo € Wy (0).

Once again the existence and uniqueness of a solution for the dual problem follows from Lax-
Milgram. Now we observe that if we take v = ¢}, then the above variational equation give us
the following identity,
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ao(wo,Eh) = (VMO,VEh)£2(Q) = (5h75h>£ = ||5h||i2(9)'

2(92)

Once again we can observe that thanks to the Galerkin orthogonality we know that ao(Iywo,es) =
ao (I wo, ug) — ao(Iywo, uf) = (f, Inwo) c2(2) — (f, Iiwo) c2(2) = 0. We have:

— Il ey) = &) = (V v ) _ < , ) — llenlParon.
ao(wo NWo en) = ap(wo, €p) Wo, VE ) EhyEh £2(2) ||5h||cz(9)
Using ||wy — Iywo| < C’hg_eHshHLQ(Q) we have the following inequality,

H.
lenllz2(q) = aolwo — Liswo, x) < |wy — Lol o lenlwrage)

< Chgiethnﬁ(Q)hgie”fHL?(Q);

dividing both sides by [[ex|| z2() we yield,

4_
||5h||£2(9) < Chs 2€HfHL2(Q)'

O

We can observe that the numerical experiment presented in Figure [4.T] confirm the validity
of the a priori error estimate proven in Proposition and Theorem [1.5

2 Penalty Finite Elements

In this section T would like to study a different flavour of conforming finite elements, known
as penalty finite element method. The idea of penalty finite element methods is to solve ([1.18)
rather then (1.16), since as we have discussed in the first chapter the solution of converges
to as € — 0o. Penalty finite element method enjoyed a brief moment of popularity in the
early days of finite element methods: in particular estimate for the numerical error of penalty
finite element method have been studied first by I. Babuska and J.P. Aubin in [7] and [3]. The
estimate provided by Babuska and Aubin revealed sub-optimal in the cases studied by M. Utku
and C. M. Carey [87]. A later explanation of the phenomena observed by M. Utku and C. M.
Carey is presented by Zhong Sci in [85], under the assumption u € W?2({2). Furthermore error
estimate assuming u € W?%((2) are presented by J.T. King and M. S. Serbin in [65] 66]. A
similar problem has been studied also by J.W. Barrett and C. M. Elliot in [II] and by Z. Li.
in [69]. Let me now introduce the discrete variational problem corresponding to ,

Find u! € V such that Yv € V(§2) :

a.(ul,v) = <VUQ,VU> + 6_1(u?,v> = (f, v) (3.6)
£2(0) £2(802) £2(0)

We will begin presenting the argument introduced in [85] to obtain an error estimate in W2(£2)
for non smooth domain (2. In particular for the rest of the chapter we wil focus our attention on
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the case where the bilinear form a. (-, -) depends on the chosen mesh, i.e. ¢ = h=7. Furthermore
for the remainder of this chapter we will assume the triangulation 7 associated with the discrete

space V verifies (2.9) and Definition [2.1]

Remark 2.1. 1t is clear that the ¢ appearing in W*~=? is different from the ¢ in (1.18). In order
to avoid heavy notations from now on I will drop the dependence on ¢ when writing W*P.

Lemma 2.2. Let ug € W32(£2), ul € V, be respectively the solution of (1.16) and (3.6)), with
f e L%2) and e = h=°. Then the following inequality holds:

2 2
b2 _ (9u0 b h12 _ oug ,
|0 = uZ|yy10 i) + 1 / (an +u5> < Juo = 0" [}y a0y + 1 / (anh ) :

(3.7)
for allvh € V.

h

Proof. Since u minimizes the penalised energy (1.9) in V" one has,

ao(ul u, 6)—l—h / |uh| ds—2(f,u. )[;2( )<a0(v V") R0 / |vh‘2ds—2(f,vh)£2(9). (3.8)
00 00

Moreover from the fact that ug is the solution of (I.I6) in Wy? we know that ag(ug,v™) —
ou
/ Z0hds = (f,v ) 20 , and therefore the above inequality becomes,
an

ao(ul, ul) + h™ / |u?|2ds—2a0(uo,u?)—2 %u " ds
o0 o0 On
< ap(v", ")+ h° / }vh‘zds — 2a0(ug, v") — 2 %vh ds.
01?2 90 on

Rewriting the left hand side of (3.7)) in terms of the bilinear form ay(-, -) we obtain,

2
2 Y L o0u
‘uo — u?}wlﬂ(ﬂ) +h /6_(2 (h 87’? +uh> ds

:ao(uo,u0)+h0/ <%) ds + ao(u”, ul) + b~ / (u?)g ds — 2ag(u”, ug) — 2 auouh
a2 \ On 092 o2 On

< ag(ug, ug) + h“/ (%) ds + ao(v™, v") + h° / (u?)2 ds — 2a9(v", ug) — 2 Ouo i
a0 \ On Rle; a0 On
= Jup — 0" +h“’/ (%h‘”rvh)? ds (3.9)
0 Wl,Q(_Q) 00 an .
O

The above lemma allows to prove an a priori error estimates for penalty finite element
methods with respect to the W?(£2) norm also in the context of non smooth domains.
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Theorem 2.3. Suppose we are in the hypothesis of the previous Lemma, then:

[0 — u?wa(n) < O fll 22
where p = min{%, o % — 9}.

2

Proof. We take v" = I}, and use Lemma to obtain the following,

2
h|2 - 8u0 o h
‘ug—ua‘wl,z(m%—h /arz (%h +u5> ds
1 2 —0 auo o 1 2
S ‘UQ - INUO‘WLQ(Q) + h 0 %h + INUQ ds. (310)

Using the interpolation property ||ug — I/{/UOHWl,Q(Q) < Ch3 || fIl ;2(£2) presented in the previous
section together with the trace inequality we obtain,

_ Oug ) >2 / (0u0)2 _ / 182
h™° —h? + Iyu ds <2 h° — ] ds+h7° Iy ds
/3!2 (On AT N a0 \ On an( N 0)
o I
< C(h7 4+ b)) fll c2(0)-

Once again thanks to the interpolation property above we get,

2 2
‘UO - u?‘wl,z(g) < Chs HuOHW%2(Q) < Chs HfHLZ(Q)

and therefore,

. duo, o 1) h ?
. /BQ (%h +u5) ds -+ [to = ! o) < CR (£ oo

Last using the coercivity of the bilinear form a.(-,-) we get,

||u0 — u’;Hi\ﬂ’Q(m <C (h—U /aQ (u?>2 ds + }uo — “?|w1,2(m) < Ch2u||f||wk,z(m.

O

Remark 2.4. For the previous theorem to work, we need to prove that we have a coercivity
constant independent of ¢,

a.(v,v) = / Vol de 4! / of2ds > / Vol de + / [0 ds > C(2) V]l g2
(93 on (93 on

the last inequality was obtained using Poincaré-Friedrichs inequality, I redirect the reader
interested in the proof of this result to [20], Chapter 10.
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Remark 2.5. Starting with (3.8) we can get a different version of equation (3.9)),

8UO

2
- h\ 2 h|2 -0 R\ 2 -0 o
h /89 (ua) ds < ‘uo—v ‘W1’2(9)+h /a(z (v ) ds+ h /80 <%h ) ds.

In fact taking the interpolant constructed in the previous chapter as v", we notice that Iug

will be null on 942 as long as {2 is a polygon. Such phenomenon occurs because the triangulation
exactly matches the boundary. Thanks to the above observation one gets on polygonal domains,

8u0

o 2
e I e T P

he / (") ds < he
02 £2(@)

In particular this modification to Lemma [2.2]improves the error estimate provided in Theorem
2.3
h
[uo = 2 [l 2y < CPN S Nl 2
2 g
302
experiments I carried out, as we can see from Figure [4.2]

where p = min{ } We notice that this error bound is also observed in the numerical

We are now interested in the £2(£2) error. To achieve this I'll present the duality trick by I.
Babuska, first introduced in [7].

Theorem 2.6. Assuming we are in the hypothesis of Lemma we have:
h «
H“O - ua”[ﬁ(n) < Ch fll 2

ag

wherea:min{u—i—%,u—i—%—%,%,0,@—1—5}.

Proof. Let us introduce the quantity &j, := up — u” and observe that by Lax-Milgram theorem
there exists w € W,*(£2) such that,

ap(w,v) = (€n, V) 2(0) Vo € Wy (1),
in particular Corollary [3.7] tells us that w € W3~=2(£2) and
ftlly5-ca gy < lnlercey

Once again we use the fact that if ug solves the elliptic problem (1.16)) and v belongs to W2(2)
then,

0
ag(uo, v) = (f,v)r20) + (%,U) . (3.11)
n £(802)

Since w is the solution of the dual problem and using (3.11)) we know that,
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ow
ao(en, w) = (ehren)c2) + | ens 7= B ;
/) r200)

o ou
&0<€h,w) + a0(€h, I}\/w — w) =h (5h7 [jlvw)£2(3_q) — ( a; [N-’LU> s
£2(092)

where to obtain the last equality we have used the fact that ao(u”,v) = (f,v) 20 —

h‘”/ ulv ds.
o0

Now we can rewrite (5, €5)z2(2), a8

|(5h75h £2(02 ‘ < ‘ag 5h,INw w ’—l-h/ |(5h,1j{/w)£2(69)‘ -+

(= 50)
hy o .
on £2(892)

The first term in (3.12)) can be controlled using the usual interpolation property and Theorem
2.3] We now consider the functional,

(3.12)

(3210}
N
on’ £2(992)

+

8U0 6u0

R(v) = ap(ug — v,ug —v) + h™° h? +v,—h’ + :
0 olto =) <8n " On >52(am

Such functional is minimized by 1 and following the same reasoning presented in the proof of
Theorem [2.3{one gets, R(ul) < Ch*||f|| sz Therefore

on " on

8u0 8 2
CO0he 4l S0 4 < Ch2t
(G v Gone k) <Ol

Oug , > Do ) (8“0 h) ho,h 2
0 o CU0 po + 2 S0pe oyt + (ul ! < Cp2te 3.13
( on on £2(00) on £209) ( )c2 90) ||f||£2(9) (3.13)

0 n Ou
oo (ﬂha put, 2 ) < OW¥|| £
L£2(092)

We now use Cauchy’s inequality with a parameter 3 to observe that,

on £2(90)

on

h
R

Choosing 8 = 1 then (3.13) becomes,

8u0 8u0
(U?,Ug)ﬁz o0) < C h2N+UHfH 2 h2o‘ <—, —> . (314)
( £2( on’ On £2(09)
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Combining (3.14)), (3.12), Theorem and the usual interpolation property we can conclude,

8u0

2 —0 g ag
{(€h7€h)£2(9)| < MOh“Hng?(Q)h‘” ||€hH£2(Q) +Ch (hw? ||f||£2(9) +h on

T
) hellenll 22 (o)

£2(092)

8u0

Oug

7
+Cllenl c2(oyh® on

+C (h“+3\!f\lm(g) +h? )Heh\lp(m
£2(892) L£2(042)

||5h||c2((2) < MChaHf||£2(Q).

Since we are using the continuity of ag(+,-), M doesn’t explode as ¢ — 0. O

(-3
hy A
on £2(99)

following the same reasoning presented in the proof of Theorem this yields,

Remark 2.7. Since vo(Ij,w) = 0 then (3.12) becomes,

Y

‘(€h,€h)£2(g)’ < ’ao(eh,[/{[w — w)| +

||5h”,c2(n) < MChaHfHE?(Q):

where a = {u + %,a,,qu %}
If we combine this comment with Remark we get, a = {%, % +

o)
A careful reader might notice that for both the error estimates in W'2(£2) and in £2(£2) we
first presented a general error estimates and then in a sequent remark noticed how the fact that
Yo(Ijw) = 0 affects the error estimates just proven. This because the interpolant presented in
the previous chapter is a particular case of the construction made in [79)], and we want to leave
the result in a usable form also for future generalisation with other form of the interpolant
presented in [79].
We notice that the numerical experiments presented in Figure 4.3 confirm the a priori estimates
presented in Remark [2.7] but also show an interesting phenomena i.e. the estimate presented in
the above Remark are suboptimal for 0 = g The next sections will be devoted to observation
regarding this behaviour.

IR

3 Weighted Duality Argument

The originally intended name for this chapter was “68 ways not to prove the numerical phe-
nomena observed at the end of the previous section”, but instead of showing to the reader many
unsuccessful proofs I opted to argue why it is not possible using a duality argument to retrieve
optimal rate of convergence in £2(£2) when o = 2. First T would like to show the reader why an
argument like the one in does not apply in the context of penalty finite element method
and therefore there might still be hope of retrieving a g rate of convergence in £2(2) even if
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in W'2(£2) we only have a % rate of convergence. We know from Remark that we have for
penalty finite element methods a coercivity constant that is independent from h and therefore
we can write,

H“O - ug”i\ﬂ»?(n)
C(£2)

< ae(up — u?,uo — u?) < ac(ug, ug — u?) — ag(u?, Uy — u?)

ac(ug, up — ul) — ac(ul, up) + ac(ul, ul)

IN

N

< ac(ug,up — ul) — (f,ul) 20y — (Onuo, ul) 200y + (fs ul) c2(a)

IN

ae(uo, Uy — U?) - (3nU0, U?)LQ(BQ)

IN

(f, 1o — u) 202y — 2(Bntig, ul) £2(00)

IN

HfHLQ(Q) HUO - u?H£2(Q) - 2<anu07 U?)ﬁ?(a(z),

therefore we have the following inequality,
g — || < CD Nl g2con |0 = || 1oy — C(2)2(Big, u) 22
0 ellwre) = £2(02)||%o ellc2(0) nU0, Ug ) £2(002)-

Since there is no guarantee that C'(£2)2(9,uo, u") z2(90) is positive, we still can retrieve a g rate
of convergence in £2(£2) even if in W'2(£2) we only have a 2 rate of convergence. Going back
to the proof of the £2(2) error estimate for penalty finite elements presented in the previous
section we notice that a key step of both Babuska and Aubin-Nitsche duality arguments is to
bound from above the quantity, |ag(es, [ w — w)|. Furthermore in both proof of Theorem
and Theorem we showed that the best possible estimate we can obtain is of the form,

’ao(gh, I}\/w — w)| < Chs H€h||52(9)7

while ideally we are searching for an error estimate of the following form when o = :

wlot

5
’ao(ﬁh, I,/l\/’w - w)| < Chs th”c?(rz)‘

Once again this mismatch between the error estimate that we have and the one that we want
. . . . . 5

is due to the polluting effect of the corner. In fact since ug, wy only lives in W3:2(£2) we can
only have error estimates of the form,

||u0 - ugHWLQ(Q) < Ch%”f”l?(()) Hwo - [./1\/'w0HW1,2(Q) < Ch%‘k”[ﬁ(ﬂ):

respectively for the Aubin-Nitsche duality trick and the Babuska duality trick. Now the reader
might think, as the writer did when first dealing with this problem, that since the % rate of
convergence is caused by the fact that ug, wy € Wgz(ﬁ) a good way of solving this problem
is to take full advantage of the regularity results we have proven in the previous section for

Muckenhoupt weighted Sobolev spaces and domain with point singularities. In particular the
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key idea here is to evaluate the error norm of €, in a W??(|x|™”, £2) while we evaluate the error
norm of wy — Ijwg in a W*2(|x]7, 2), i.e.

ao(en, Iyw — w) :/ VeV (wo — Iywy) dx = / Ven|x["V (wo — Lyywo) x| dx
0 0
H.
< |€h|W1v2(|x\*7,Q) ‘w - ]/l\/w‘wl,2(|x|w79)- (3'15)

At this point we can use Corollary to provide estimates for |w — Ifl\/w|wl’2(\xr7 o) Further-

more we will assume that u” behaves as the interpolant I}ug in Wh2(|x|”, 2). In particular
once we observe that for weights of the form w(x) = |x|” the following chain of inequality holds,

w(Sr) = / Ix[? dx < / X[ dx < C(o7 )i
St BT(O’T,hT)(O)
then Corollary yields the following,

Y, _4
|€h|w1,2(|xl*v,9) ~ ‘uo - Ijl\fUO‘W1,2(|x|*W,Q) < C(Q)hhgﬂh ’ Hf||£2(\x|”,9)
y,2
< CR2T5| fl 2029
o 2_7
|wo — I}\/wo}m,z(lxh,n) < C(Q)hh~2h sllenll 2w,y = CU2)RS ;”5h||£2((2)7 (310

and therefore (3.15)) gives us for all positive v € Ay(R?) the estimate that comes next, i.e.

H. 4
(10(8}” Ijl\fw - w) S ‘gh‘W1>2(|x|'y,Q)|w - Ijl\/'wlwlz(‘xr'y’_o) S C(Q>h5 H‘€h||£2(9)||f||£2(‘x|—7’9)-

In conclusion the reader can notice that even if we exploit the full regularity of the solution
up, in Muckenhoupt weighted Sobolev spaces, it is not possible to retrieve by a duality trick
the desired estimate, i.e. |ag(ep, [yw — w)| < Ch%||5h||£2(m. We make the reader aware of the
fact that in order to prove estimate , we used the natural embedding,

W (x|, £2) < W2(12),
ey < Flwrzgxy )
A careful reader might notice that if in (3.15)) we can not use the Holder inequality with Holder

exponents p, ¢ different from 2, because to verify the hypothesis of Corollary we need p € (1, ¢
and ¢ € (1, pl.

4 Petrov-Galerkin method

It turns out that the idea of studying the bilinear form aq(-, ) as mapping from two different
Muckenhoupt weighted Sobolev spaces to R, i.e.
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ap : WH(|x|7, 2) x WH(|x|77,2) - R

2
is the correct way to obtain error estimates with respect to the £2(]x|?,(2) norm and
2
WH2(|x]3, 2) norm. In fact the objective of this section is to present an a priori analysis

with respect to the Wm(lx\%, 2) norm, following similar ideas to the one presented in [34] and
[8]. The key tool of this section will be the Brezzi-Necas-Babuska theorem and a decomposition
lemma for £2(|z|?, 2),

Theorem 4.1 (Brezzi-Necas-Babuska). Let X and Y be two Hilbert spaces, a : X XY — R
a bilinear form and consider the variational problem, find v € X such that

a(u,v) = (f,v)y Yv ey,

where f € Y*. The above variational problem is well-posed if and only if,

1.Yv eY ifa(u,v) =0Vu € X then v =0,
2. there exists o« > 0 such that

inf sup _alwv) > . (3.17)
weX yey [[ullx|[vlly

Furthermore the following stability estimate |u|y < X[/ flly. holds.

Proof. 1 redirect the reader interested in the proof of this result to [46], Chapter 2. O

Remark 4.2. Condition 1. in the previous theorem can be swapped with,

a(u,v)

inf sup >a. (3.18)

vEY yeXx ||u||X||U||Y

In fact, we fix v € Y and observe that above inf-sup condition tells us that there exits one
u* € X such that a(u,v) > of|ul|y||v]ly and therefore a(u,v) = 0 Vu € X implies also
a(u*,v) =0, i.e.

02 a(u,v) 2 afjuly[lolly = v =0,

Lemma 4.3. If v € (—2,2) then the following decomposition for the space L*(|x|”, 2) holds,

e, 2) = (YW, ) @ (YWE(x . 2))

Proof. This result is a consequence of the fact that for v € (—2,2) both |x|™" and |x|” are
Muckenhoupt weights and therefore all the Muckenhoupt weighted spaces mentioned in this
Lemma are Hilbert. In fact the key argument to prove this result is the well posedness of the
mixed problem,

Given q € [L2(|x]", 2)]", find (o,2) € L2(|z]", £2) x Wy?(|x[", 2) s.t.

(0’, T>£2(_Q) + (VZ7 T>ﬁ2(9) - <q’ T)£2(Q) , (319)

(Vw, 0')52(9) = 0
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which can be proven using the Banach-Brezzi-Babuska Theorem. I redirect the reader interested
in a detailed proof of this result to [34], while more information on the BBB Theorem can be
found in [14]. 0

Corollary 4.4. Given a data f € L2(|x|"7, 2) the following variational problem,
find ug € Wy (|2|”, 2) such that ap(ug,v) = (f,v)2(0) for all v e Wy*(|z|77, ©2),
1s well-posed and we have the following stability estimate,
HUHWM(\XW,Q) < C||f||c2(|xw,rz)-

Proof. Let v € Wy?(|z|™”, ) and consider ¢ = |x|"Vuv which by construction belongs to
L%(|x]7, £2). Using Lemma [4.3] we can find o, € £2(]x|?, 2) and 2z, € W"?(|x|", £2) such that,

(VZU7VU)£2(Q) = (q, VU)£2(_Q) — (UU7VU)L2(Q) = (q, VU)£2(Q) = ||U||12/V172(\x|77,(2)'

The above equality together with the fact that ||z, ”W1’2(\XI”,Q) < C||q||£2(‘x‘779) = ||1)||V\,1,2(|x|7779)7
yields:

(Vz,,Vov)go S (Vz,,Vv)o HUHWLQ(|X|—W,Q)

||ZU||WL2(‘X"Y,Q) - C||UHWL2(|X\*V,Q) C '
Therefore (3.17)) is verified and by a similar argument also (3.18)) is verified. We conclude
applying Theorem [4.1] O

Remark 4.5. Now given T' € T we define the quantity, 7p = max d(x,0), we will need the fact
xE

that the discrete norm thHM defined as, thwa = ZTeTT}thHiQ(T) is equivalent to the
continuous one, i.e.
|2 |2 |2
cljv ||h,’y < HU Hc2(|x|7,9) < O”U Hh,w' (3.20)
I will only consider the case v > 0 because the case v < 0 can be proved analogously. I fix the
notation S7;, to denote the diamond of simplexes that have 0 as vertex. First I observe that

one of the inequalities in (3.20) comes for free while the other one has a more involved proof.
In particular we observe that there exist C'(0), Cy(o) > 0 such that for all T € T\Sr,,

Cl(O'T)’XP S Tr S OQ(O‘T)|X”Y vx e T.

Therefore for the simplexes 7" in 7\ Sz, we have have a bound of the form,

2
C(O'T)FTHU{)LHZQ(T) < H|X‘%u8 £2(T)

We aim at proving a similar bound also for 7" C Sy, and we will do so by using a scaling
argument. Let T" be the usual reference element, Fir : T — T the usual affine mapping from T’
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to T, 1, = ul o Fr and Xy = FT_l(O), then by the shape regularity assumption we know there
exists a C3 > 0 such that |Frx|” > C3(07)hr|X| and therefore,

2 2 T n . T e 12
oo = [ WPl = o [ Ea R as > Clonmi [ KR G2
“m 7| /7 7| /2

g

We introduce A > 0 and introduce the sub reference element,
Ty = {XE T - d(x,0) > A},
and we notice that for A sufficiently small we have,

[ itz Dy, [T = (0- o@)|?
T

~ 112 ~ (12
v ) < CONanlz )

Combining these together with (3.21]) we get, the following,

T o T, . VTN
= cm)h;ﬁ [ %% > Colon) A0 il > Clor, A linls ey
T

7

|17t

£2(T

The key idea here is that since A was chosen in the reference domain it is independent from
hr and it doesn’t need to go to zero as hy goes to zero.

Since we have the norm equivalence (3.20)) we will resort to a discrete version of Lemma
in order to prove the well posedness of the discrete variational problem ({3.4).

Lemma 4.6. Consider v € (—2,2) and the discrete functional space,

M® = {an € [£(2)]" Q, €P(T) VT € T}

T

Then the following decomposition holds,

M= (V) D (vf}){

Proof. Once again I redirect the reader interested in the proof of this result to [34], but essen-
tially the argument there presented is the well posedness of the discrete version of (3.19). O

Theorem 4.7. The discrete variational problem (3.4) is well posed and we have the following
error estimate,
Huo — ugHW1v2(|x“/|,Q) <C info Huo (3.22)
vheVv

— |
Uil (x,0)

Proof. We consider v" € V and define the function th = (FT)*VVvh‘ for all T' € T. Using

T

the previous lemma we can find (03, 2,) € M® x V such that,
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IVanlly,, < 2llanll,, =21Vl
(Vzn, V0" )m(g) (an, V" ) 202) (Uhvvvh>c2(9)
2
= (Vap, V" )c?(n) = (Qh’vvh)ﬂ(n) = HV“hHh,ﬂ'

(Vwy, Vo') (Vzn, V) L,

[EAl

L£2(£2)

Therefore for all v» € V we have that, sup
whEXO/
C’HVvhHh . The other inf-sup condition can be proven in an analogous manner and therefore

the problem is well posed. We prove (3.22)), observing that for all (uff —o") € WH2(|x]|”, 2)

[[wn|

wh2(|x|7,2) wh2(x|7,2)

h _ b h
h & ap(ug —v", wy) ag(u — v™, wy)
CHUO —v HWI,Q('X"Y7Q) < SUPO ” ’ = Sup ” :

9

el whHle?(\x\—%O) wn v h||W1,2(\x\—’Y,.Q)

where to obtain the last equality we used the Galerkin orthogonality, i.e. a(u —ull, wy) = 0. We
notice that the bilinear form a(-, -) is continuous by Hélder inequality and therefore we have,

h
L ap(u — v"; wy)
bt = 28 T
wp,

Cllug - v < Ju ="

wh2(x|7,9)
wh2(jx|=7,92)

Now using the triangular inequality we have,

1
H“ h”wl 2(x2) S H“O h||W1v2(|x\7,Q) + H“h - ugHwM(\xw,m < (1 + 5) H“ - “h”wlv?qxw,m’

since the above inequality holds for all v € V' we can take the inf and conclude. O

Corollary 4.8. The following error bound holds for the solution of the discrete variational

problem (3.4)),

o —

Proof. We simply apply (3.22)) together with the fact that from the previous chapter we know
that,

wi2(jz)3,0) = W2:2(|z|3,02) 3.0)

O

We can observe that the numerical experiment presented in Figure confirms the numer-
ical estimates presented above. The most natural question the reader might ask now is if we
can prove an error estimate similar to (3.23) also for the penalty finite elements method. In
order to achieve this result we need to prove the weighted counterpart of Lemma [2.2] To do
this we notice that even if in a Petrov-Galerkin setting we don’t have an energy minimization
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prospective we can retrieve this point of view in the discrete setting. In particular the key idea
is that u” not only minimizes J.(v) in V. In fact we observe that when we proved we
also showed that the scalar product (-,-)s is equivalent to the scalar product (-, )wir(x/,0)
and therefore the solution of the variational problem,

(VU Vv )h, +h (U v )th7 (f v ) (324)

minimizes the following energy functional with in V|

1
Jg,,y('uh) = —§(V?} Vo )[:2 (Ix[7,92) + h~ (U (% )£2(|x\“’,6.(2) (f, )£2 Ix|7,02) > (325)

provided that we are working in the Hilbert spaces setting which is a consequence of asking
WE2(|x]7, £2) to be Muckenhoupt weighted Sobolev space, i.e. v € (—2,2). If we consider (3.6))
and instead of v we consider a corresponding v € P, (7)) defined as, 17’ = v‘ 7, then we have

T T
that u” verifies also (3.24)). Since we know that u” minimizes the energy functional (3.25)) we
have the following inequality,

(Vug’vu?)pqxwg +h ( U, ?)LQ(IXW ) — 2( 7u]§)c2(\x|m)

S (vvh’ V/Uh)[:2(|xlv o)) +h” (U v )52(|x|'Y ) — 2(f> )£2(|x|779)'

Furthermore we notice that for any function v € W42?(|x| ™7, £2) we can consider x — v|x|” €
W2(2) and use ([1.16)) to obtain,

(VU(J? VU)LQ(\XP,Q) + hio-(an )52 (1x]7,42) (fa )EQ (|x]7,42)-

Combing the last two equations we obtain a weighted version of (3.10)),

2
2 _ oug ,
’uO - u?‘wl,zaxp,n) +h / ( on h? +u ) |x|” ds

2
2 o dug , ,
< ‘UO - ]Jl\fUOIWLz(\xp,Q) +h /8(2 <5,_h + INUO> x| ds. (3.26)

Theorem 4.9. Let uqy be the solution to (1.16)), u be the solution to (3.6), then the following
a priori error estimate holds,

o —

leQ(\x|%,Q) < ChquHLQ(Q)

where | = min {1, %}

Proof. The proof of this result is a repetition of the steps described in Theoremusing (3.26),
together with the interpolation estimates developed in the previous Chapter and the fact that
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2
W2(|x|3, §2) is a Muckenhoupt weighted Sobolev space and therefore we can use the usual
trace inequality. Last one needs to apply the same observation made in Remark O



Conclusions

I would like now to draw the main conclusion of my thesis regarding the penalty finite ele-
ment methods applied to non smooth domains. First I proved an a priori error estimate using
techniques developed for singular data in [85] and a duality trick proposed in [7]. Those es-
timates establish the non inferiority of penalty finite element methods compared to classical
conforming finite elements with respects to the error in W'2(£2) and £2({2), provided that the
correct penalisation term is chosen. Those results are contained in Theorems and in
Remarks [2.5| and I then numerically observed that if we choose the penalisation term in a
specific manner then the penalty finite element method converges optimally with respect to the
L£2(£2) norm, see Figure . I’ve also showed the known result that conforming finite element
methods cannot achieve optimal rate of converge. When we mention an appropriate choice of
penalisation term we mean ¢ = h*/® as numerically showed in Figure 4.2 and Figure

I later addressed the question, “Is it possible to prove by a duality trick that the penalty finite
element converges optimally with respect to the £2(£2) norm ?”. In particular I found a negative
answer in both the classical and weighted regularity setting. Now a very legitimate point that
the reader can make is why do we care if it is possible to prove the above result by a duality
argument. The answer to this question lies in the fact that the standard Babuska-Osborn the-
ory for the approximation of eigenvalue problems yields an a priori error estimate by using a
duality trick. Furthermore from Figure [4.6] we notice that the eigenvalues approximation using
penalty finite elements converges with order 2 which is even better than the super-convergence
we observed for the source problem in £2(2). More details on this topic can be found in [13].
Last, I proved that both the conforming finite element method and the penalty finite element
method, with the correct penalisation term, converge with optimal error rate in the norm as-
sociated with the natural choice of Muckenhoupt weighted Sobolev space used to study the
regularity in domains presenting point singularity. I redirect the reader interested in an argu-
ment regarding why this result is morally relevant to [63].

Further work will involve more detailed investigations of the super-convergence with respect
to the £2(£2) norm, presented in Figure . In particular it would be interesting to recast the
penalty finite element method in the framework of energy corrected finite elements presented
in [44], for which a second order convergence in £? can be proven. Moreover as previously
discussed, Figure motivates us to look into a weighted Babuska-Osborn theory, this will be
a delicate task since from Figure [1.5 we know that the source problem converges with order 1
in the weighted W!2(£2) norm even if the same behaviour is also presented by conforming finite
elements for which the approximation of the eigenvalues does not super-converge. Last it would
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be interesting to investigate what happens in the mixed Laplacian problem if we imposed the
homogeneous Neumann boundary conditions using a penalisation method.



4

Appendix — Numerical Experiments

All the numerical experiments that are presented in this thesis were realised using the finite
element library NGSolve [84],|83]. Furthermore all the code to reproduce the numerical ex-
periments here presented can be found in the repository dedicated to my master thesis. The
eigenvalues computation were performed using the SLEPc library [64]. I’d like to thank Stefano
Zampini for teaching me about the PETSc library and how to use PETSc4py and SLEPc4py.

Fig. 4.1: The figure shows how the error of the conforming finite element method, described in
chapter 3, decays when it is measured with respect to the W12?(§2) and £2(£2) norms.
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Fig. 4.2: The figure shows how the error of the penalty finite element method, described in
Chapter 3, decays when measured with respect to the W'2(£2) and £?(§2) norms varying o.
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Fig. 4.3: The figure shows how the error of the penalty finite element method, described in
Chapter 3, decays when it is measured with respect to the £2(£2) norm for o = 1.2,1.7, 1.8 and
2.0.
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Fig. 4.4: The figure shows how the error of the conforming finite element method, described

in Chapter 3, decays when it is measured with respect to the WI’Z(]X\g, 2) and EQ(]x\g, 2)
norms.
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Fig. 4.5: The figure shows how the error of the penalty finite element method, described in
2 2
Chapter 3, decays when it is measured with respect to the W2 (|x|3, 2) and £?(|x|?, £2) norms.
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Fig. 4.6: The figure show the convergence of the eigenvalue corresponding to the first moment of
the Poisson equation (on the domain depicted in Figure , for the conforming finite element

method and the penalty finite element method.
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